Infinite Series

A ballista was used as a portable rock-throwing machine. The propul-
sion mechanism was similar in appearance to a crossbow. Skilled
artillerymen aimed and fired the ballista entirely by eye. What type
of projectile path do you think these artillerymen preferred—a high,
arching trajectory or a low, relatively level trajectory? Why?

Maclawrin polynomials approximate
a given function in an interval
around x = 0. As you add terms

to the Maclaurin polynomial, it
becomes a better approximation of

the given function near x = 0. In i T S i |
oLl u i | 1 | ¥ ( - 7 fls ' -J'
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Maclaurin series is equivalent to v gl - <, L

the given function (under suitable
conditions),

Charles & Josette Lenars/Corbis
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ection § Sequences

EXPLOQRATILON:

Finding Patterns Describe a pattern
for each of the following sequences.
Then use your description to write a
formula for the nth term of each
sequence. As n increases, do the
terms appear to be approaching a
limit? Explain your reasoning.

1111
a L,3,45 51 -
L V|
b. 1.2, 6 % 126> - - -
10 10 10 10
C 10,3, %. 7015 - - -
d, 149 1625

€. 72700 13> 16> 19> + - -

NOTE Occasionally, it is convenient
to begin a sequence with ag, so that the
terms of the sequence become

Ay A, 0y d5. . ., Q

T

STUDY TIP Some sequences are
defined recursively. To define a sequence
recursively, you need to be given one or
more of the first few terms. All other
terms of the sequence are then defined
using previous terms, as shown in
Example 1(d).

¢ List the terms of a sequence.

* Determine whether a sequence converges or diverges.

* Write a formula for the nth term of a sequence.

¢ Use properties of monotonic sequences and bounded sequences.

Sequences

In mathematics, the word “sequence” is used in much the same way as in ordinary
English. To say that a collection of objects or events is in sequence usually means that
the collection is ordered so that it has an identified first member, second member, third
member, and so on.

Mathematically, a sequence is defined as a function whose domain is the set of
positive integers. Although a sequence is a function, it is common to represent
sequences by subscript notation rather than by the standard function notation. For
instance, in the sequence

L, 2 3, 4 ..., n ...
l l l l l i ¢ Sequence
a, 4y Ay Gy ..., 4,
1 is mapped onto a,, 2 is mapped onto a,, and so on. The numbers Ay, Gy, sy . o ., A,

- . are the terms of the sequence. The number a, is the nth term of the sequence,
and the entire sequence is denoted by {a,}.

EXAMPLE | Listing the Terms of a Sequence
L |

a. The terms of the sequence {a,} = {3 + (—1)"} are
3+H(-DL 3+ (D2 3+ (=13 3+ (=14, ..

2, 4, 2, 4,
b. The terms of the sequence {b,} = { 1 _n 2n} are
1 2 3 4
1-2-1"1-2:21-2:31-2-4 """
L2 3 4
s 37 5’ 7’
w2
¢. The terms of the sequence {c,} = [
12 22 32 42
2-1r2-12-1r2¢-1"""
] 4 2 16
r e 7 15’

d. The terms of the recursively defined sequence {d,}, where d, =25 and
dn+] = dn — Sare

25, 25-5=20, 20—-5=15 15—-5=10,....



y=a,
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L-¢ ==
A
123456 - M

For n > M, the terms of the sequence all lie
within € units of L.
Figure 9.1

NOTE There are different ways in
which a sequence can fail to have a
limit. One way is that the terms of the
sequence increase without bound or
decrease without bound. These cases
are written symbolically as follows.

Terms increase without bound:
lim g, = o
n—oo

Terms decrease without bound:

lim g, = —©
n—oo
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Limit of a Sequence

The primary focus of this chapter concerns sequences whose terms approach limiting
values. Such sequences are said to converge. For instance, the sequence {1/2"}

11111
2°4°8 16732
converges to 0, as indicated in the following definition.

Definition of the Limit of a Sequence
Let L be a real number. The limit of a sequence {a,} is L, written as
n—oo

‘ lim a, =L

if for each & > 0, there exists M > 0 such that |a, — L| < & whenever n > M.
If the limit L of a sequence exists, then the sequence converges to L. If the limit
‘ of a sequence does not exist, then the sequence diverges.

Graphically, this definition says that eventually (for n > M and £ > 0) the terms
of a sequence that converges to L will lie within the band between the linesy = L + &
and y = L — &, as shown in Figure 9.1.

If a sequence {a,} agrees with a function f at every positive integer, and if fx)
approaches a limit L as x— oo, the sequence must converge to the same limit L.

THEOREM 9.1

Limit of a Sequence
Let L be a real number. Let f be a function of a real variable such that

lim f(x) = L.

x—o0

If {a,} is a sequence such that f (n) = a, for every positive integer n, then

lim a, = L.
n—oc

EXAMPLE 2 Finding the Limit of a Sequence

Find the limit of the sequence whose ath term is

a”=(l+l>.
n

Solution In Theorem 5.15, you learned that

lim (1 + l) =wg}
X—Co X
So, you can apply Theorem 9.1 to conclude that

lim ¢, = lim (l + l)
n

n—>00 n—co

= é. ———
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The following properties of limits of sequences parallel those given for limits of
functions of a real variable in Section 1.3.

THEOREM 9.2 Properties of Limits of Sequences
Let lim a, = L and lim b, = K.

1n—>c0o n—co
L lim (g, +b)=L+K 2. lim ca, = cL, cis any real number
n—oco n—oo
. . a, L
3. lim (a,b,) = LK 4, lim = =—p #0and K + 0
n—oo n—co b’l K

@D EXAMPLE 3 Determining Convergence or Divergence
ot R ——

b

TECHNOLOGY  Use a graphing
utility to graph the function in Example
4. Notice that as x approaches infinity,
the value of the function gets closer and
closer to 0. If you have access to a
graphing utility that can generate terms
of a sequence, try using it to calculate
the first 20 terms of the sequence in
Example 4. Then view the terms to
observe numerically that the sequence
converges to 0.

a. Because the sequence {a,} = {3 + (—1)"} has terms
2,4,2,.4,. .. See Example 1(a), page 594.
that alternate between 2 and 4, the limit

lim q,

n—>00

does not exist. So, the sequence diverges.

b. For {b,} = {1 _n Zn}’ divide the numerator and denominator by # to obtain
li L—lim;——l See Example 1(b 594
”_>I£10 1= 2, iy (l/n) — 5 5 ee Example 1(b), page .

which implies that the sequence converges to —%.

EXAMPLE 4 Using L’Hépital’s Rule to Determine Convergence
A

n2
2~ 1

Show that the sequence whose nth term is a, = converges.

Solution Consider the function of a real variable

x2

1) = 55—

Applying L'Hépital’s Rule twice produces

lim X
im0 22X — 1

lim ———— = lim ——— = 0.

A 022 A oy 0

Because f(n) = a, for every positive integer, you can apply Theorem 9.1 to conclude
that

2

. n _
Am o1 =0

See Example 1(c), page 594.

So, the sequence converges to 0.

ﬁ} D indicates that in the HM mathSpace® CD-ROM and the online Eduspace® system

.~

Jor this text, you will find an Open Exploration, which Jfurther exploves this example using the
computer algebra systems Maple, Mathcad, Mathematica, and Derive.
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Forn = 4, (— 1)"/ n!is squeezed between
—1/2"and 1/2".
Figure 9.2

NOTE Example 5 suggests something
about the rate at which n! increases as
n— oo. As Figure 9.2 suggests, both
1/2" and 1/n! approach 0 as n—> oo.
Yet 1/n! approaches 0 so much faster
than 1/2" does that

1/n! L2

lim —5— = lim

n—oo 1/2 n—oo Vl' = 0

In fact, it can be shown that for any fixed
number k,

This means that the factorial function
grows faster than any exponential
function.
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The symbol n! (read “n factorial”) is used to simplify some of the formulas
developed in this chapter. Let n be a positive integer; then n factorial is defined as

n=12:34---(n—1) - n

As a special case, zero factorial is defined as 0! = 1. From this definition, you can
seethat 1! =1,21=1-2=231 =123 =6, and so on. Factorials follow the
same conventions for order of operations as exponents. That is, just as 2x3 and (2x)3
imply different orders of operations, 2n! and (2n)! imply the following orders.

ml=2n) =20 +2+3-4- - -n)
and
nt=1-2-3-4---n-(n+t1)-- 2n

Another useful limit theorem that can be rewritten for sequences is the Squeeze
Theorem from Section 1.3.

— = — —_———

THEOREM 9.3 Squeeze Theorem for Sequences
If

lim g, =L = lim b,
n—o0 n—aco

and there exists an integer N such that a, < ¢, < b, forall n > N, then

lim ¢, = L.

n—oo

EXAMPLE 5 Using the Squeeze Theorem

1
Show that the sequence {c,} = {(— 1" ;} converges, and find its limit.

Solution To apply the Squeeze Theorem, you must find two convergent sequences
that can be related to the given sequence. Two possibilities are a, = —1/2" and
b, = 1/2", both of which converge to 0. By comparing the term n! with 2", you can
see that

n=1:2:3-4-5-6--"-n

2456 n

n — 4 factors
and

M=0.2:2:2:2:2...2=16+2+2---2,

n 4}act0rs
This implies that for n 2 4,2" < n!, and you have
-1 1 1
— < (-1)'—< = >
z SV s n2t
as shown in Figure 9.2. So, by the Squeeze Theorem it follows that

n—oo

. nl _
lim (—1) = 0.
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In Example 5, the sequence {c,} has both positive and negative terms. For this
sequence, it happens that the sequence of absolute values, { [c,,l}, also converges to 0.
You can show this by the Squeeze Theorem using the inequality

1 1

0< ; < ?, n =4,

In such cases, it is often convenient to consider the sequence of absolute values—and
then apply Theorem 9.4, which states that if the absolute value sequence converges to
0, the original signed sequence also converges to 0.

THEOREM 9.4 Absolute Value Theorem

_ —

For the sequence {a}, if

lim [a,| =0  then lim a, = 0.
n—oQ Hn—o0

Proof  Consider the two sequences {|a,|} and {—|a,|}. Because both of these
sequences converge to 0 and

"l

_Ialll S all S |a

you can use the Squeeze Theorem to conclude that {a,} converges to 0. ———

Pattern Recognition for Sequences

Sometimes the terms of a sequence are generated by some rule that does not
explicitly identify the nth term of the sequence. In such cases, you may be required to
discover a pattern in the sequence and to describe the nth term. Once the nth term has
been specified, you can investigate the convergence or divergence of the sequence.

EXAMPLE 6 Finding the nth Term of a Sequence
L]

Find a sequence {a,} whose first five terms are

Tys T e
and then determine whether the particular sequence you have chosen converges or
diverges.

Solution  First, note that the numerators are successive powers of 2, and the denom-
inators form the sequence of positive odd integers. By comparing a, with n, you have
the following pattern.

22222
173757779 " "2y —1

Using L'Hopital’s Rule to evaluate the limit of f(x) = 2¢/(2x — 1), you obtain
2 22 o
AR =T il 5 =2 L

So, the sequence diverges. e
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Without a specific rule for generating the terms of a sequence or some knowledge
of the context in which the terms of the sequence are obtained, it is not possible to
determine the convergence or divergence of the sequence merely from its first several
terms. For instance, although the first three terms of the following four sequences are
identical, the first two sequences converge to 0, the third sequence converges to g 9, and
the fourth sequence diverges.

111 1 |

i A
111 1 6

b} e hr D —nt6)

{}.ll_l.l n*>—3n+3

i R e T m—25n+ 18
111 —nn+ 1)n -4

{dn} . 2’ 4’ 87 0’ . il 6(”2 + 3n — 2) 9% & 8

The process of determining an nth term from the pattern observed in the first several
terms of a sequence is an example of inductive reasoning.

EXAMPLE 7 Finding the nth Term of a Sequence

Determine an nth term for a sequence whose first five terms are
28 26 80 24
1’2 6724 12007 7
and then decide whether the sequence converges or diverges.

Solution Note that the numerators are 1 less than 3". So, you can reason that the
numerators are given by the rule 3" — 1. Factoring the denominators produces

1=1
2=1-2
6=1-2-3

U=1-2-3-4

120=1-2-34-5--"

This suggests that the denominators are represented by n!. Finally, because the signs
alternate, you can write the nth term as

W31
a = (-1 (T)
From the discussion about the growth of n!, it follows that

] 3” — 1
lim |a,| = lim
n—co n—»00 n!

=0.

Applying Theorem 9.4, you can conclude that

lim g, = 0.
n—ce

So, the sequence {a,} converges to 0. ———
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|
.
2n
2
————
o T
b 2

(c) Not monotonic

Figure 9.3

Monotonic Sequences and Bounded Sequences

So far you have determined the convergence of a sequence by finding its limit. Even
if you cannot determine the limit of a particular sequence, it still may be useful to
know whether the sequence converges. Theorem 9.5 provides a test for convergence
of sequences without determining the limit. First, some preliminary definitions are
given.

Definition of a Monotonic Sequence
A sequence {a,} is monotonic if its terms are nondecreasing

afay<a;<- - <g, <

or if its terms are nonincreasing

G 2a,2a,2:-2q,2"--

EXAMPLE 8 Determining Whether a Sequence Is Monotonic
L]

Determine whether each sequence having the given nth term is monotonic.

2n n?

ca,=3+(=1)" b b= . c, =
a. a =3+ (—1) b. b, - ¢ oc, TR

Solution
a. This sequence alternates between 2 and 4. So, it is not monotonic.

b. This sequence is monotonic because each successive term is larger than its
predecessor. To see this, compare the terms b, and b, , ,. [Note that, because # is
positive, you can multiply each side of the inequality by (1 + n) and (2 + n)
without reversing the inequality sign.]

_2n 2 2h+1)
b”_1+n<1-i-(n-l-1)_b’“rl
9
202 +n) < (1 + n)(2n + 2)
?
dn + 202 < 2 + 4n + 2102

0<2

Starting with the final inequality, which is valid, you can reverse the steps to
conclude that the original inequality is also valid.

¢. This sequence is not monotonic, because the second term is larger than the first
term, and larger than the third. (Note that if you drop the first term, the remaining
sequence ¢,, €3, ¢4, . . . 1S monotonic.)

Figure 9.3 graphically illustrates these three sequences. ————

NOTE In Example 8(b), another way to see that the sequence is monotonic is to argue that the
derivative of the corresponding differentiable function £(x) = 2x/(1 + x) is positive for all x.
This implies that f is increasing, which in turn implies that {a,} is increasing,



NOTE All three sequences shown in
Figure 9.3 are bounded. To see this,
consider the following.

2<a,<4
1<bh,22
4
0<g¢, < g
(1”
}
|
4_.
3.
L == Fr—
| -
2 _ -~ a5
- 03
~"a,
1
a, a,Sa,<a;< ~<L

fo—tf—n

| { 2 3 4 5

Every bounded nondecreasing sequence
converges.
Figure 9.4
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Definition of a Bounded Sequence
1. A sequence {a,} is bounded above if there is a real number M such that
a, < M for all n. The number M is called an upper bound of the sequence.

2. A sequence {a,} is bounded below if there is a real number N such that
N < a, for all n. The number N is called a lower bound of the sequence.

3. A sequence {a,} is bounded if it is bounded above and bounded below.

= S g—

One important property of the real pumbers is that they are complete.
Informally, this means that there are no holes or gaps on the real number line. (The set
of rational numbers does not have the completeness property.) The completeness
axiom for real numbers can be used to conclude that if a sequence has an upper bound,
it must have a least upper bound (an upper bound that is smaller than all other
upper bounds for the sequence). For example, the least upper bound of the sequence

{a,} = {n/(n + D},

1234 n
2,3a4,5,'-.,n+1,...

is 1. The completeness axiom is used in the proof of Theorem 9.5.

THEOREM 9.5 Bounded Monotonic Sequences

If a sequence {a,} is bounded and monotonic, then it converges.

Proof Assume that the sequence is nondecreasing, as shown in Figure 9.4. For the
sake of simplicity, also assume that each term in the sequence is positive. Because the
sequence is bounded, there must exist an upper bound M such that

a<ay<ay<---<aq, < S M

n

From the completeness axiom, it follows that there is a least upper bound L such that

a<a,<ay<- - <a, < <L

For & > 0, it follows that L — & < L, and therefore L — & cannot be an upper
bound for the sequence. Consequently, at least one term of [a,} is greater than
L — g That is, L — & < ay for some positive integer N. Because the terms of {a,l
are nondecreasing, it follows that ay < «, for n > N. You now know that
L—¢e<ay<a,<L<L+e for every n>N It follows that la, — L| < €
for n > N, which by definition means that {a,} converges to L. The proof for a

nonincreasing sequence is similar.

EXAMPLE 9 Bounded and Monotonic Sequences

a. The sequence {a,} = {1/n} is both bounded and monotonic and so, by Theorem
9.5, must converge.

b. The divergent sequence {b,} = {n?/(n + 1)} is monotonic, but not bounded. (It is
bounded below.)

c. The divergent sequence {c,} = {(—1)"} is bounded, but not monotonic.
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See www.CalcChat com for worked-out solutions to odd-numbered exercises

In Exercises 1-10, write the first five terms of the sequence.

1 a,=2" 2.0,= =
n!
1\ 2\
3‘ Cl” = (—E) 4' an = (——j)
. nmw _2n
5. a, = sin 2 6. W=
_ (_ 1)11(n+l)/2 _ ”+]<2>
7. a,= e 8 a,=(-1 »
1 1 2
9.(1,,=5——+—2 10.a"=10+—+£2
no n n o n

In Exercises 11-14, write the first five terms of the recursively
defined sequence,

+
12. a, = 4,a,,, = (k 1>ak

. a =3,a,,=2@a—-1) 2

13. a, = 32,4, , = 3a, 4. a) = 6,a,,, =32

In Exercises 15-20, match the sequence with its graph. [The
graphs are labeled (a), (b), (), (d), (e), and (f).]

(a) ay (b) (;’f
4
L !
' ooo000® JO! **
61 o g8/ o ©®
[ ]
4i' 6, ®
4+e R
2] 2| .
| S S Y B |4 :’?»n
"2 4 6 8 10 2 4 6 8 10
(C) ay (d) Iy
i
0.6 |
04 | ° )
!0‘2;:“' T!?-?»n | e o o o o
—2‘24.6‘1(.10 N A I
-0.4- 4 | 2 4 10
—06 ~1 |o e o o o
_08
—l.O|o -2
(e) ay ) 'f:ﬂ
]
4 e 4@
3 3
[ ]
2 ° 2 .
..
*
I‘ o. r| ®oe,
[ 11 9%0084- 1 o I I S 8 1 A
2 4 6 8 10 |2 4 6 8 10
8 8n
15, a, = 16. =S
" on+ ] o n+1
4”
17. a, = 4(0.5)" ! 18, a, = —
n!
_l”
19, (l”:(‘])” 20. anz(—)
n

H"' In Exercises 21-24, use a graphing utility to graph the first 10

terms of the sequence.

21. a”=zn 22. a,,=2—ﬁ
3 n
2n
— — n—1 =) _ ik w
23. a, = 16(=0.5) 24. a, m 1

In Exercises 25-30, write the next two apparent terms of the
sequence. Describe the pattern you used to find these terms.

25.2,5,8,11,. . . 26. 1,435 . ..
27. 5,10,20,40,. . . 28 1,—4,5 -5 ...
29. 3,-3,3, -3 . 30.1,-3,% -2 .

In Exercises 31-36, simplify the ratio of factorials.

10! 25!
31. ST 32, 23
! + 2)!
33. (L_‘_]_) 34, {H -1
n! !
(2n — 1)! _(__'2;1 +2)!
. (2n + 1) 36. (27}

In Exercises 37-42, find the limit (if possible) of the sequence.

si? |

3. a, = T 8. a,=5— p
2 Sn
39, g4, = ——— 40.q, = ——2
N V44
- 2
41. «, = sin - 42, a, = cos —
n n

In Exercises 43-46, use a graphing utility to graph the first 10
terms of the sequence. Use the graph to make an inference
about the convergence or divergence of the sequence. Verify
your inference analytically and, if the sequence converges, find
its limit.

n+ 1 1
3. a, = . a, = —
4 a, n 44 a, n3/’2
1
45. a, = COS%T 46. a, =3 — 7

In Exercises 47-68, determine the convergence or divergence of
the sequence with the given nth term. If the sequence converges,
find its limit.

n%=em(”)

48. a, = 1+ (—1)

n+1
2 _ 3
49, q = —nt4 50, q = —1
" 2n2 + 1 b \3/;4.1
_ 135« (2p—1)
51 a, = @)

52, 5 L350 (2



+ =" L+ (=1
53, — U 54, o = LEED
n n
3
55. 0 =) 56. o, = 18 i
2n n
3” "
57 a,= %, 58. a, = (0.5)
+ )1 )
59, o = i+ W 60, a = =D
n n' N n!
n—1 n
6l. a, = = a =2
n n—1
n? n?
62'a”_2n+l 2n—1
n’
63.a,=—, p>0 64. a, = nsin—
e n
k 1
65. a, = 1+ 66. a, = 2"
67. a, = sin n 68. a = cos 27rn
n n

In Exercises 69—82, write an expression for the nth term of the
sequence. (There is more than one correct answer.)

69. 1,4,7, l(),. .. 70. 3’7’11’]5’. .
7. —1,2,7,14,23,. . . 7201, -4 h -
2345 i 11
35856 742,15 ~hh

75. 21+ 51 +5 1T +41+5. ..

76 L+ L1+ 1+ 1+ R 1+5 ..
I 2 3 4

2.3 3.4 4-55-6"""

1

1 » 200 - - -

77.

78.

’

M=

il
+ 2

= R w

79.

80. ],x,;, 6 24 1200

2, 24, 720, 40,320, 3,628,800, . . .
1, 6, 120, 5040, 362,880, . . .

81.
82.

In Exercises 83-94, determine whether the sequence with the
given nth term is monotonic. Discuss the boundedness of the
sequence. Use a graphing utility to confirm your results.

1 3n
83.(1”—4—" 84'a"ﬂn+2
85. a, = 2”11” 86. a, = ne "?
87. a, = (—1)“(1) 88. a, = (—3>

n 3
2 " 3 1
89. a, = (5) 90. a, = <§>
9. a,= sin% 92, a, = cos(%)
93. a, = =~ g B

n n
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PJP' In Exercises 95-98, (a) use Theorem 9.5 to show that the
sequence with the given nth term converges and (b) use a graph-
ing utility to graph the first 10 terms of the sequence and find

its limit.
95.an=5-{—l 96.51,,=4—§
n n
1 1 1
97. a, = 3 <l 3”> 98. g, =4+ o

99.

100.

101.

102.

Let {a,} be an increasing sequence such that 2 < a, < 4.
Explain why {a,} has a limit. What can you conclude about
the limit?

Let {a,} be a monotonic sequence such that a, < 1. Discuss
the convergence of {a,}. If {a,} converges, what can you
conclude about its limit?

Compound Interest Consider the sequence {A,} whose nth
term is given by

rV
A, =P+
n P( 12>

where P is the principal, A, is the account balance after n
months, and r is the interest rate compounded annually.

(a) Is {A,} a convergent sequence? Explain.
(b) Find the first 10 terms of the sequence if P = $9000 and
r = 0.055.

Compound Interest A deposit of $100 is made at the begin-
ning of each month in an account at an annual interest rate of
3% compounded monthly. The balance in the account after n
months is A, = 100(401)(1.0025" — 1).

(a) Compute the first six terms of the sequence {4}

(b) Find the balance in the account after 5 years by computing
the 60th term of the sequence.

(c) Find the balance in the account after 20 ycars by
computing the 240th term of the sequence.

Writing About Concepts

103. In your own words, define each of the following.

104.

(a) Sequence (b) Convergence of a sequence

(¢c) Monotonic sequence (d) Bounded sequence

The graphs of two sequences are shown in the figures.
Which graph represents the sequence with alternating
signs? Explain.

a, a
i ]

2 [ ) L]
1 1 ]

: |

| 4 ‘—44—&» n ; b A
2 6 | 2 4 6
~1 4 . g
|

-2
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Writing About Concepts (continued)

In Exercises 105-108, give an example of a sequence
satisfying the condition or explain why no such sequence
exists. (Examples are not unique.)

105. A monotonically increasing sequence that converges to 10

106. A monotonically increasing bounded sequence that does
not converge

107. A sequence that converges to %

108. An unbounded sequence that converges to 100

109. Government Expenditures A government program that
currently costs taxpayers $2.5 billion per year is cut back by
20 percent per year.

(a) Write an expression for the amount budgeted for this
program after n years.

(b) Compute the budgets for the first 4 years.

(¢) Determine the convergence or divergence of the sequence
of reduced budgets. If the sequence converges, find its
limit.

110. Inflation 1f the rate of inflation is 4%% per year and the
average price of a car is currently $16,000, the average price
after n years is

P, = $16,000(1.045)".

Compute the average prices for the next 5 years.

P}” 111. Modeling Data The number a, of endangered and threatened

species in the United States from 1996 through 2002 is shown
in the table, where n represents the year, with n = 6 corre-
sponding to 1996. (Source: U.S. Fish and Wildlife Service)

n 6 7 8 9 10 11 12

1053 | 1132 | 1194 | 1205 | 1244 | 1254 | 1263

(a) Use the regression capabilities of a graphing utility to find
a model of the form

a,=bn®>+cn+d, n=26,7,...,12

for the data. Use the graphing utility to plot the points and
graph the model.

(b) Use the model to predict the number of endangered and
threatened species in the year 2008.

F‘p 112. Modeling Data  The annual sales a, (in millions of dollars)

for Avon Products, Inc. from 1993 through 2002 are given
below as ordered pairs of the form (n, a,), where n represents
the year, with n = 3 corresponding to 1993. (Sowurce: 2002
Avon Products, Inc. Annual Report)

(3,3844), (4, 4267), (5, 4492), (6, 4814), (7, 5079),
(8,5213), (9, 5289), (10, 5682), (11, 5938), (12, 6171)

(a) Use the regression capabilities of a graphing utility to find
a model of the form

a,=bn+c¢, n=3,4,...,12
for the data. Graphically compare the points and the
model.

(b) Use the model to predict sales in the year 2008.

113. Comparing Exponential and Factorial Growth Consider
the sequence a, = 10"/n!.

(a) Find two consecutive terms that are equal in magnitude.

(b) Are the terms following those found in part (a) increasing
or decreasing?

(¢) In Section 8.7, Exercises 65-70, it was shown that for
“large” values of the independent variable an exponential
function increases more rapidly than a polynomial func-
tion. From the result in part (b), what inference can you
make about the rate of growth of an exponential function
versus a factorial function for “large” integer values of n?

114, Compute the first six terms of the sequence

{3

If the sequence converges, find its limit.

115. Compute the first six terms of the sequence {a,} = {(/ﬁ} If
the sequence converges, find its limit.

116. Prove that if {s,} converges to L and L > 0, then there exists
anumber N such thats, > 0 forn > N,

True or False? In Exercises 117-120, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

117. 1f {a,} converges to 3 and {b,} converges to 2, then {a, + b,}
converges to 5.

118, If {a,} converges, then lim (a,

119. If n > 1, then n! = n(n”j L

120. If {a,} converges, then {a, /n} converges to 0,

- all+l) =0.

121. Fibonacci Sequence 1In a study of the progeny of rabbits,
Fibonacci (ca. 1170—ca. 1240) encountered the sequence now
bearing his name. It is defined recursively by

Gy =a, +a,,, where a =1landa, =1.
(a) Write the first 12 terms of the sequence.

(b) Write the first 10 terms of the sequence defined by

a
_ “n+1
b,=—""—, n21,
n

(¢) Using the definition in part (b), show that
1
=1+—-
i bn— 1

n

(d) The golden ratio p can be defined by lim b, = p. Show
n—oo

that p = | + 1/p and solve this equation for p.
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123.

124.

125.

126.

127.

128,

. Conjecture Let x, = 1 and consider the sequence x, given
by the formula
S O

n—1

Xy = X n=12....

Use a graphing utility to compute the first 10 terms of the
sequence and make a conjecture about the limit of the
sequence.

Consider the sequence
V2, 2+ ﬁ,\/2+ $5+ 2z

(a) Compute the first five terms of this sequence.
(b) Write a recursion formula for a,, forn = 2.
(c) Find lim a,,.

n—co

Consider the sequence
V6,6 + 6,6+ 6+ V6, ..

(a) Compute the first five terms of this sequence.

(b) Write a recursion formula for a,, forn 2 2.

(¢) Find nli_}rgo a,.

Consider the sequence {a,} where a, = vk, a,, | = Jk+ a,,
and k > 0.

(a) Show that {a,} is increasing and bounded.

(b) Prove that lim g, exists.

(¢) Find lim (;:OO

n—oo

Arithmetic-Geometric Mean Leta, > by > 0.Leta, be the

arithmetic mean of @, and b, and let b, be the geometric mean

of ay and by,
_at b

a, 3

b, = Vagb,

Now define the sequences {a,,} and {b,} as follows.

Arithmetic mean

Geometric mean

Gn—1 i bn—l

a, = b an*]bu—l

bn =

(a) Let a, = 10 and b, = 3. Write out the first five terms of
{a,} and {b,}. Compare the terms of {b,}. Compare a,
and b,. What do you notice?

(b) Use induction to show that a, > a,,, > b, > b, for
ag > by > 0.
(c) Explain why {a,} and {b,} are both convergent.
(d) Show that lim a, = lim b,.
n—oo

n—oo

(2) Let f(x) = sinx and a,, = n sin 1/n. Show that
lim a, — f(0) = L.
n—co

(b) Let f(x) be differentiable on the interval [0, 1] and
f(0) =0. Consider the sequence {a,}, where
a, = nf(1/n). Show that 1im ¢ = £(0).

H—00
Consider the sequence {a,} = {nr"}. Decide whether {a,}
converges for each value of r.

@ r=3 (b) r=1 © r=3

129.

130.

131.

132.

133.
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(d) For what values or r does the sequence {nr*} converge?
(a) Show that [ Inx dx < In(n!) forn = 2.

Y
)

2.5
2.0 ¢
1.5
1.0
0.5

Th234 o

(b) Draw a graph similar to the one above that shows
In(n!) < f1"" Inx dx.

(c) Use the results of parts (a) and (b) to show that

nt (I’L + l)n+l
<nl < L

o pm ,forn > 1.
(d) Use the Squeeze Theorem for Sequences and the result of
q
part (c) to show that
Yn! _ 1

lim—— = -—.
n—oc n e

(e) Test the result of part (d) for n = 20, 50, and 100.
. 1 i
Consider the sequence {a,} = {; 2 1—+1(T/n_)}
(a) Write the first five terms of {a,}.
(b) Show that lim g, = In 2 by interpreting a,, as a Riemann
H—00
sum of a definite integral.

Prove, using the definition of the limit of a sequence, that
1
lim = = 0.

n—oo 1

Prove, using the definition of the limit of a sequence, that

lim #»* =0for—1 <r <1

n—oo

Complete the proof of Theorem 9.5.

Putnam Exam Challenge

134.

13s.

Let {x,}, n = 0, be a sequence of nonzero real numbers such
that x2 — x,_, %,,, = } for n=1,2,3,. . .. Prove that
there exists a real number a such that x,, | = ax, — x,_,, for
alln 2 1.

LetT, =2,T, =3,T, =6,and, forn = 3,

T,=(n+ 4T,

n-1_ 4nTn—2 + (411 - 8)T11—3'
The first 10 terms of the sequence are
2,3, 6, 14, 40, 152, 784, 5168, 40,576, 363,392.

Find, with proof, a formula for 7, of the form 7, = A, + B,,
where {A,} and {B, } are well-known sequences.

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Series and Convergence

INFINITE SERIES

The study of infinite series was considered a
novelty in the fourteenth century. Logician
Richard Suiseth, whose nickname was
Caleulator, solved this problem.

If throughout the first half of a given
time interval a variation contimes at u certain
intensity, throughout the next quarter of the
interval at double the intensity, throughout the
Jollowing cighth at triple the intensity and so
ad infinitum; then the average intensity for the
whole interval will be the intensity of the
variation during the second subinterval (or
double the intensity)

This is the same as saying that the sum of the
infinite series

STUDY TIP  As you study this chapter,
you will see that there are two basic
questions involving infinite series. Does
a series converge or does it diverge? If a
series converges, what is its sum? These
questions are not always easy to answer,
especially the second one.

* Understand the definition of a convergent infinite series.
* Use properties of infinite geometric series.
* Use the nth-Term Test for Divergence of an infinite series.

Infinite Series

One important application of infinite sequences is in representing “infinite
summations.” Informally, if {a, } is an infinite sequence, then

o
20,,201+a2+(13+--.+(, + .. Infinite series

n
n=1I

is an infinite series (or simply a series). The numbers « 1» 4y, a5, are the terms of the
series. For some series it is convenient to begin the index at n = 0 (or some other
integer). As a typesetting convention, it is common to represent an infinite series as
simply X a,. In such cases, the starting value for the index must be taken from the
context of the statement,

To find the sum of an infinite series, consider the following sequence of partial
sums.

S) = q
S, =a, + a,
Sy =a, +a,+ a,

S =a ta,tay;+---+aq,

n

If this sequence of partial sums converges, the series is said to converge and has the
sum indicated in the following definition.

Definitions of Convergent and Divergent Series

For the infinite series E a,, the nth partial sum is given by

n=|

S, =a, ta,+- -+ +uq

n*

If the sequence of partial sums {S,} converges to S, then the series E a
n=1

n

converges. The limit S is called the sum of the series.

S=a|+a2+--~+an+---

If {S,} diverges, then the series diverges.

EXPLORATION

Finding the Sum of an Infinite Series Find the sum of each infinite series.

Explain your reasoning.

a. 0.1 + 001 + 0001 + 00001 +- - b 15+ 1055 + 705 + 9w + - -
LS A

| 15
i0.000 T To00000 T

Cl+s5+i+g+m+- -




TECHNOLOGY  Figure 9.5
shows the first 15 partial sums of the
infinite series in Example 1(a). Notice
how the values appear to approach the
liney = 1.

1.25

______ o 0-000-00-00-00-

Figure 9.5

NOTE You can geometrically deter-
mine the partial sums of the series in
Example 1(a) using Figure 9.6.

o=

Ri-

ENE

Figure 9.6

FOR FURTHER INFORMATION To learn
more about the partial sums of infinite
series, see the article “Six Ways to Sum
a Series” by Dan Kalman in The College
Mathematics Journal. To view this
article, go to the website
www.matharticles.com.
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EXAMPLE | Convergent and Divergent Series

a. The series

= 1 1 1 1 1
D R R TR

n=1

has the following partial sums.

S,l=%+%+]§+ -+§1;=2”2; L
Because
jim S5 =

it follows that the series converges and its sum is 1.

b. The nth partial sum of the series

$ -ty (=D - B

is given by

1
n+ 1

SN:]_

Because the limit of S, is 1, the series converges and its sum is .

¢. The series
i=1+1+1+1+-"
n=1

diverges because S, = n and the sequence of partial sums diverges. —

The series in Example 1(b) is a telescoping series of the form
(b, — b,) + b, — b3) + (b3 — b4) + (b, — b5) + ... Telescoping series
Note that b, is canceled by the second term, b is canceled by the third term, and so
on. Because the nth partial sum of this series is
Sn . bl - bn+l

it follows that a telescoping series will converge if and only if b, approaches a finite
number as n — oo. Moreover, if the series converges, its sum is

S=b,— lim b,
n—oco
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EXPLORATION

In “Proof Without Words,” by
Benjamin G. Klein and Irl C. Bivens,
the authors present the following dia-
gram. Explain why the final statement
below the diagram is valid. How is
this result related to Theorem 9.6?

P 1 S
APQR ~ ATSP

l+r+r2+p4+-. .=

1 —r

Exercise taken from “Proof Without
Words” by Benjamin G. Klein and

Irl C. Bivens, Mathematics Magazine,
October 1988, by permission of the
authors.

EXAMPLE 2 Writing a Series in Telescoping Form
T —

2
Find th f th
ind the sum of the series ”ZI —_
Solution
Using partial fractions, you can write
2 2 1 1
a

"Ta =1 @i-Den+ D) -1 2+l

From this telescoping form, you can see that the nth partial sum is

1 1 1 1
===} +{==2 .
S <1 3) (3 5) oot

So, the series converges and its sum is 1. That is,

S
2n—1 2n+1 2n+ 17

& 2 , 1)

n=1

Geometric Series

The series given in Example 1(a) is a geometric series. In general, the series given by

(o=}
2 ar*=atar+ar’+---+arm+--., a#0 Geometric series
n=0

is a geometric series with ratio r,

THEOREM 9.6 Convergence of a Geometric Series

A geometric series with ratio r diverges if [r| > 1.If 0 < || < 1, then the
series converges to the sum

> ar = - 0<|r] <.
n=0 l = w
=
Proof 1t is easy to see that the series diverges if r = +1. If r # +1, then §, =
a+ar+ar*+ -+ ar"" ' Multiplication by r yields
rS, =ar+ar*+ar* + - - -+ ar.

Subtracting the second equation from the first produces S, — ¥S,=a — ar". There-
fore, S,(1 — r) = a(1 — r"), and the nth partial sum is

> ~n

If 0 < |r| < 1, it follows that " —0 as n— oo, and you obtain

[lim (1- r”)J =2

n—-oco 1—r

lim S = lLim [L(l - r”)] =4
r 1

n—co n—co =¥

which means that the series converges and its sum is a/(1 — ). It is left to you to
show that the series diverges if |r| > 1. ——



TECHNOLOGY Tryusing a
graphing utility or writing a computer
program to compute the sum of the
first 20 terms of the sequence in
Example 3(a). You should obtain a
sum of about 5.999994.

www
A

Fs

P
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EXAMPLE 3 Convergent and Divergent Geometric Series

a. The geometric series

S ERDE O]

; = ;10) + 3(%) + 3(%)2 + -

. 1. . .
has a ratio of r = 5 with a = 3. Because 0 < |r| < 1, the series converges and its
sum is

b. The geometric series

& (3y 3,9 27
2<2>—1+2+4+8+~--

n=0

. 3 . .
has a ratio of » = 5. Because |r| 2 1, the series diverges. —

The formula for the sum of a geometric series can be used to write a repeating
decimal as the ratio of two integers, as demonstrated in the next example.

EXAMPLE 4 A Geometric Series for a Repeating Decimal

Use a geometric series to write 0.08 as the ratio of two integers.

Solution For the repeating decimal 0.08, you can write

8 _ 8 8 . 8
ettt
102~ 10¢ 106 = 108

i (i)(L)”
2 \102\102/) -
For this series, you have a = 8/10% and r = 1/102. So,

a __8/100 _ 8
0.080808. . . = T = 7= (1/10%) ~ 99"

0.080808 . . .

Try dividing 8 by 99 on a calculator to see that it produces 0.08. —

The convergence of a series is not affected by removal of a finite number of terms
from the beginning of the series. For instance, the geometric series

o 1 )n o ( 1 )n
- and .
,124 (2 nZO 2
both converge. Furthermore, because the sum of the second series is a/(1 — r =2,
you can conclude that the sum of the first series is

s=2-[(3f + (5 + (G + G

=2—?=§.
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STUDY TIP As you study this chapter,
it is important to distinguish between an
infinite series and a sequence. A
sequence is an ordered collection of
numbers

ay,dy ds, . . ., da

n oo

whereas a series is an infinite sum of
terms from a sequence

ata,+ - +a,+ -

NOTE Be sure you see that the
converse of Theorem 9.8 is generally
not true. That s, if the sequence {a, }
converges to 0, then the series = a, may
either converge or diverge.

Infinite Series

The following properties are direct consequences of the corresponding properties
of limits of sequences.

THEOREM 9.7 Properties of Infinite Series

It¥a, =A,2b, = B, and ¢ is a real number, then the following series
converge to the indicated sums.

OO

1. Eca =cA

n
n=1

2. ¥ (a,+b)=A+8B

n=1

3.5, -b)-4-38

n=1

nth-Term Test for Divergence

The following theorem states that if a series converges, the limit of its nth term must
be 0.

THEOREM 9.8 Limit of nth Term of a Convergent Series

f=s)
If > a, converges, then lim a, = 0.

= =00

Proof Assume that

n—co

E a,= lim S, =L.
n=1]
Then, because S, = §,_,

lim S, = lim S, , =L

n—co n—co

it follows that

+ a, and

L= 1lim §, = lim (S,_, + a,)

n—oo n—oo
= lim §,_, + lim q,
n—o0 n—co
=L+ lim a,
n—-co

which implies that {a,} converges to 0.

The contrapositive of Theorem 9.8 provides a useful test for divergence. This
nth-Term Test for Divergence states that if the limit of the nth term of a series does
not converge to 0, the series must diverge.

TTHEOREM 9.9 nth-Term Test for Divergence

oo
n— n=1

‘ If lim a, # 0, then ' a, diverges. ‘




STUDY TIP The series in Example
5(c) will play an important role in this
chapter.

You will see that this series diverges
even though the nth term approaches
0 as n approaches co.

e

Y \
12 3 5 6 7

The height of each bounce is three-fourths
the height of the preceding bounce.
Figure 9.7
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EXAMPLE 5 Using the nth-Term Test for Divergence
E——————————

20
a. For the series E 2, you have
n=0

lim 2" = oo.

H—00

So, the limit of the nth term is not 0, and the series diverges.

=) !
b. For the series —Zn'n—.-kl’ you have

n=1

n! :_l

Jim 1T 2

So, the limit of the nth term is not 0, and the series diverges.

< |
¢. For the series E =, you have
n

n=I

.1
lim — = 0.
n—oo N
Because the limit of the nth term is 0, the nth-Term Test for Divergence does not
apply and you can draw no conclusions about convergence or divergence. (In the
next section, you will see that this particular series diverges.)

EXAMPLE 6 Bouncing Ball Problem

A ball is dropped from a height of 6 feet and begins bouncing, as shown in Figure 9.7.
The height of each bounce is three-fourths the height of the previous bounce. Find the
total vertical distance traveled by the ball.

Solution When the ball hits the ground for the first time, it has traveled a distance
of D, = 6 feet. For subsequent bounces, let D, be the distance traveled up and down.
For example, D, and D, are as follows.

D, = o) + o) = 126)

Up Down
D, = 6()E) + 6()(3) = 120
—
Up Down

By continuing this process, it can be determined that the total vertical distance is

D=6+ 123) + 126 + 12G)° + - - -

-6+ 12 i(%)rﬁl

n=0

— 6+ 12() S @)

n=0

=6+9
(1—%>

=6+ 9(4)

= 42 feet. ES—
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Exercises for Section 9.2

In Exercises 1-6, find the first five terms of the sequence of
partial sums.

Lo1+f+5+k+&+. .

1 2 3 4 5

2. + + +

23 3-4 4.5 5'6+6 7+

9 27 81 243

33-3+7 % +5¢—

1 1 1 1 1 1

'T+§+§+7+§+ﬁ+
3

t

D8
B
|

i
=
T

2
[\
T

=
I
=

In Exercises 7-16, verify that the infinite series diverges.

oo 3\ ) 4\

n 53 » 5.6)

9. S 1000(1.055)" 10. S 2(-1.03
n=0 n=0
= n & n

. ,21 n+1 . 2’1 2n +3
=) n2 %) n

B n§=:1 n+ 1 = er o
& 20+ 1 < nl

15. Z T 16. ,;1 3n

In Exercises 17-22, match the series with the graph of its
sequence of partial sums. [The graphs are labeled (a), (b), (c),
(d), (e), and (f).] Use the graph to estimate the sum of the series.
Confirm your answer analytically.

(@ (b) s,
A
41[ PR
1 g®0000000 3 ....oo
[ ]
2 2=
[ ]
Ii- [ ®
-l fof———} |=4= n ——}—] | — le n
1234567809 123456789
(© -\l}. d s,
}
4 64
5+ ° °
3 geeo 00000 4- ° .
2y 3
2+ L4
I l . ¢ °
1.
—=t=|—l—t———=n > n
1123456789 123456789

pp'

See www.CalcChat com for worked-out solutions to odd-numbered exercises

(e) Sy §9) Sy
1 A
20 64
] o000 000 5
1544 ®
4 e®00000
1.0 34~
0.5 24
1:
- fobf A = n s | | e g
-1 1123456789 = =1 >
| -1 | 12345678

7. § 2(LY 18
m § 2 :

n=

19, J%"L—S (—i) 20, i)g (—%)

n 50 2 5 (5

In Exercises 23-28, verify that the infinite series converges.
23, ,21 n(n;-l-l) (Use partial fractions.)

24, '2] n(n;ﬂ—Z) (Use partial fractions.)

2. $2

n=1

[oe) 3 n 1 n
25. ”202 (Z) <—5)
i (09)'=1+09+ 081 + 0729 + - - :

n=0

i (=0.6)"=1-06+ 036 — 0216 + - - -

n=0

27.

28.

Numerical, Graphical, and Analytic Analysis In Exercises
29-34, (a) find the sum of the series, (b) use a graphing utility
to find the indicated partial sum S, and complete the table, (c)
use a graphing utility to graph the first 10 terms of the sequence’
of partial sums and a horizontal line representing the sum, and
(d) explain the relationship between the magnitudes of the
terms of the series and the rate at which the sequence of partial
sums approaches the sum of the series.

n 5 10| 20| 50 | 100
Sp
L ,;1 nin + 3) el ”Zl nln + 4)

32. $308s5p

n=1

o 1 n—1
34. 25<—§>

n=1

31. $20.9y

n=1

33. S 100025y

n=1

In Exercises 35-50, find the sum of the convergent series.

35. E 36. ,,21 m

2
=21 1




37 ,121 (n+ Dn+2) 38 ,2‘| (2n + 1)(2n + 3)

o0 1 H o0 4 i
». 3 (5) 40, ”206<§>

o 1\ o 2\
41. <——> 2. 32 (——)
1120 2 ,IZ 0 3

43. 1+ 0.1 + 0.01 + 0.001 + - -
4.8 +6+5+%F+- -

45.3-1+1-5+-

46.4—2+1—%+.
- Aan an n . H.+ I )
v ,,20(2” 3,,> 48: D@7 (0N
S i1y 1
49. Y (sin1) 50. 29n2+3n_2

n=1 n=1

In Exercises 51-56, (a) write the repeating decimal as a
geometric series and (b) write its sum as the ratio of two integers.

51. 04 52. 0.9
53. 0.8T 54, 0.01
55. 0.075 56. 0.215

In Exercises 57-72, determine the convergence or divergence of
the series.

& n+ 10 & ntl
57 ,,Zl 10n + | 58. ,12‘1 2n — 1
= (1 1 ) ® 1
59. "ZI (n n+ 2 60. ,,Z’l n(n + 3)
fo'e] 3n —1 oo 3N
61. n=1 2n + 1- 62‘ nzl I13
63. e 64. T
1120 2" n=0 4"
o] 211

65. S (1.075y 66. >

n=0 n=1
X n =) |
67. ,,Zzl_r;i 68. ,,Z| In—

69.

(1 + §> 70. $ e
& n+1
72. Y ln< p >

Writing About Concepts

73. State the definitions of convergent and divergent series.

N

il
=

DB
j=-3
2
g
=1
S

71.

i
i

74, Describe the difference between lim a, = 5 and

n—ooe
o

a, = 5.
n=1
75. Define a geometric series, state when it converges, and give
the formula for the sum of a convergent geometric series.

SECTION 9.2

Writing About Concepts (continued)

76. State the nth-Term Test for Divergence.

Series and Convergence 613

+ 1
77. Leta, = nT Discuss the convergence of {a,} and
o0

Y a,

n=1

78. Explain any differences among the following series.

@Sa ®»Fa © S
=1

n=1 n=1

In Exercises 79—86, find all values of x for which the series
converges. For these values of x, write the sum of the series as a
function of x.

n S 80. S (3
n=1 n=1

81 S (x— I 82. S 4<x - 3)“
n=1 n=0 4

83. § (—1yw 8a. S (—1yen

(=3

n=0

1\* o=y x2 n
8. 3 8. > (573

n=1

S 1

87. (a) You delete a finite number of terms from a divergent series.
Will the new series still diverge? Explain your reasoning.

(b) You add a finite number of terms to a convergent seties.
Will the new series still converge? Explain your reasoning.

88. Think About It Consider the formula
1

x —

1=1+x+x2+x3+"'

Given x = —1 and x = 2, can you conclude that either of the
following statements is true? Explain your reasoning.

1
—=1-1+1-1+-"":
(a)2 1-1+1-1

) —1=1+2+4+8+" -

H" In Exercises 89 and 90, (a) find the common ratio of the

geometric series, (b) write the function that gives the sum of the
series, and (c) use a graphing utility to graph the function and
the partial sums S, and S;. What do you notice?

w

2
9. 1-Z+2 T+

1 2! 3 + .o
89. 1 +x+x*+x 7 P

P=|°' In Exercises 91 and 92, use a graphing utility to graph the

function. Identify the horizontal asymptote of the graph and
determine its relationship to the sum of the series.

Function Seres
o 0 =3[ L] Sa(f
92. flx) = 2[1”1__(%] fz(%)
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H" Writing  In Exercises 93 and 94, use a graphing utility to deter-
mine the first term that is less than 0.0001 in each of the con-
vergent series. Note that the answers are very different. Explain
how this will affect the rate at which the series converges.

= l & (1Y & | 2 "

93. ,,Z. G F ) 2} (8> 94, Z. o ”;(0.01)

95. Marketing An electronic games manufacturer producing
a new product estimates the annual sales to be 8000 units.
Each year 10% of the units that have been sold will become
inoperative. So, 8000 units will be in use after ! year,
[8000 + 0.9(8000)] units will be in use after 2 years, and so
on. How many units will be in use after n years?

96. Depreciation A company buys a machine for $225,000 that
depreciates at a rate of 30% per year. Find a formula for the
value of the machine after n years. What is its value after
5 years?

97. Multiplier Effect The annual spending by tourisls in a resort
city is $100 million. Approximately 75% of that revenue is
again spent in the resort city, and of that amount
approximately 75% is again spent in the same city, and so on.
Write the geometric series that gives the total amount of
spending generated by the $100 million and find the sum of
the series.

98. Multiplier Effect Repeat Exercise 97 if the percent of the
revenue that is spent again in the city decreases to 60%.

99. Distance A ball is dropped from a height of 16 feet. Each
time it drops / feet, it rebounds 0.81/ feet. Find the total
distance traveled by the ball.

100. Time The ball in Exercise 99 takes the following times for

each fall.
5, = — 1682 + 16, 5, =0ifr=1
s, = — 1612 + 16(0.81), s, =0ifr =09

$3 = — 1612 + 16(0.81)2, s, = 0if 1 = (0.9)2
s, = — 1612 + 16(0.81)?, s, =0if1=(0.9)
s, = — 1662 + 16(0.81)" !, s, =0if t = (0.9)"~!

Beginning with s,, the ball takes the same amount of time to
bounce up as it does to fall, and so the lotal time elapsed
before it comes to rest is given by

r=1+ 22 0.9y".
n=|
Find this total time.

Probability In Exercises 101 and 102, the random variable n
represents the number of units of a product sold per day in a
store. The probability distribution of » is given by P(1). Find the
probability that two units are sold in a given day [P(2)] and
show that P(1) + P2) + P3) + - - - = 1.

1 ] Ul [ 2 n
101. P(n) = E(E) 102. P(n) = §<§>

103. Probability A fair coin is tossed repeatedly. The probability
that the first head occurs on the nth toss is given by
P(n) = (%)", where n 2 1.

(2) Show that 3} (%) -

n=1
(b) The expected number of tosses required until the first
head occurs in the experiment is given by
0 l "
Slaf
Is this series geometric?
“ (c) Use a computer algebra system to find the sum in part (b).

104. Probability 1In an experiment, three people toss a fair coin
one at a time until one of them tosses a head. Determine, for
each person, the probability that he or she tosses the first head.
Verify that the sum of the three probabilities is 1.

105. Area The sides of a square are 16 inches in length. A new
square is formed by connecting the midpoints of the sides of
the original square, and two of the triangles outside the second
square are shaded (see figure). Determine the area of the
shaded regions (a) if this process is continued five more times
and (b) if this pattern of shading is continued infinitely.

16 in,

Figure for 105

Figure for 106

106. Length A right triangle XYZ is shown above where
|XY| = z and £X = 6. Line segments are continually drawn
to be perpendicular to the triangle, as shown in the figure.

(a) Find the total length of the perpendicular line segments
[Yy,| + |,y ] + |xys) + -« - - interms of z and 6.

(b) If z = | and 6 = /6, find the total length of the perpen-
dicular line segments.

In Exercises 107-110, use the formula for the rzth partial sum of
a geometric series

’Elar" —al=r) r").
= 1-r

107. Present Value The winner of a $1,000,000 sweepstakes will
be paid $50,000 per year for 20 years. The money earns 6%
interest per year. The present value of the winnings is

20 1 "
2 50,000(7@) .

n=1

Compute the present value and interpret its meaning.



108. Sphereflake A sphereflake shown below is a computer-
generated fractal that was created by Eric Haines. The radius
of the large sphere is 1. To the large sphere, nine spheres of
radius % are attached. To each of these, nine spheres of radius
é are attached. This process is continued infinitely. Prove that
the sphereflake has an infinite surface area.

Eric Haines

109. Salary You go to work at a company that pays $0.01 for the
first day, $0.02 for the second day, $0.04 for the third day, and
so on. If the daily wage keeps doubling, what would your total
income be for working (a) 29 days, (b) 30 days, and (c) 31
days?

110. Annuities When an employee receives a paycheck at the
end of each month, P dollars is invested in a retirement
account. These deposits are made each month for ¢ years and
the account earns interest at the annual percentage rate r. If the
interest is compounded monthly, the amount A in the account
at the end of ¢ years is

r )12/— !
12

A= P+P<I+B>+ --+P<1+

-5

If the interest is compounded continuously, the amount A in
the account after ¢ years is

A=P+ Per/lz + P62:~/I2 + Pe(lzl—l)r/lz
Pl =)
- e/12 — 1"

Verify the formulas for the sums given above.

Annuities In Exercises 111-114, consider making monthly
deposits of P dollars in a savings account at an annual interest
rate r. Use the results of Exercise 110 to find the balance A
after ¢ years if the interest is compounded (a) monthly and
(b) continuously.

111. P = $50, r = 3%, t = 20years

112. P =$75, r= 5%, t= 25 years
113. P = $100, r = 4%, t = 40 years
114. P = $20, r = 6%, t = 50 years

SECTION 9.2 Series and Convergence 615

115. Modeling Data The annual sales a, (in millions of dollars)
for Avon Products, Inc. from 1993 through 2002 are given
below as ordered pairs of the form (n, a,,), where n represents
the year, with n = 3 corresponding to 1993. (Source: 2002
Avon Products, Inc. Annual Report)

(3, 3844), (4, 4267), (5, 4492), (6, 4814), (7, 5079), (8, 5213),
(9, 5289), (10, 5682), (11, 5958), (12,6171)

ﬁ"' (a) Use the regression capabilities of a graphing utility to find
a model of the form

a,=cet, n=23,4,5...,12

for the data. Graphically compare the points and the model.
(b) Use the data to find the total sales for the 10-year period.
(c) Approximate the total sales for the 10-year period using
the formula for the sum of a geometric series. Compare
the result with that in part (b).

116. Salary You accept a job that pays a salary of $40,000 for the
first year. During the next 39 years you receive a 4% raise
each year. What would be your total compensation over the
40-year period?

True or False? In Exercises 117-122, determine whether the
statement is true or false, If it is false, explain why or give an

example that shows it is false.

117. If lim a, = 0, then Ea converges.

n—oo =
118. If Ea,, = L, then E a, =L+ a,
=1 n=0
& 174
119. If |r| < 1, then ar' = ——.
d 2=

120. e YA ¢
0. The series ,Z| 1000(” Py

121. 0.75 = 0.749999 . . ..

122, Every decimal with a repeating pattern of digits is a rational
number.

diverges.

O
123. Show that the series 2 a, can be written in the telescoping
n=1
form

Sle=5-)- (-5

m=Il

where S, = 0 and S, is the nth partial sum.
124. Let 2 «, be a convergent series, and let
Ry=ay, ) tay, + -
be the remainder of the series after the first NV terms. Prove
that lim R, = 0.
N—oeoo
125. Find two divergent series 2 @, and = b, such that Z(a, + b,)
converges.

126. Given two infinite series 2 a, and X b, such that Za,
converges and 2 b, diverges, prove that =(a, + b,) diverges.

127. Suppose that 2 «, diverges and c is a nonzero constant. Prove
that % ca,, diverges.
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o & 1
128, If 2 a, converges where «, is nonzero, show that 2 -

n=1 =14y
diverges.
129. The Fibonacci sequence is defined recursively by
d,,p =a, *a,, ,wherea =1anda, = 1.
1 1 1
(a) Show that = - ;
Ay Gya3 Ay Gyan Qo lyya
= 1
(b) Show that E — =1

n=0 au+ | (l”+3
130. Find the values of x for which the infinite series

l+2x+ 2+ 23 + x4+ 20 + x5 + - -

converges. What is the sum when the series converges?

1 1

1 1
131. Provethat~+7+—3+. . -=—,f0r|r| > 1.
r re r r—1

132. Writing The figure below represents an informal way of
. & 1 . N .
showing that 2 2 < 2. Explain how the figure implies this

¥

n=1

conclusion.

)

w
=
= 2=

w
)

NI_
et

-

L

4
FOR FURTHER INFORMATION For more on this exercise, see

the article “Convergence with Pictures” by PJ. Rippon in
American Mathematical Monthly.

] -

=

133. Writing Read the article “The Exponential-Decay Law
Applied to Medical Dosages” by Gerald M. Armstrong and
Calvin P. Midgley in Mathematics Teacher. (To view this
article, go to the website www.matharticles.com.) Then write a
paragraph on how a geometric sequence can be used to find the
total amount of a drug that remains in a patient’s system after n
equal doses have been administered (at equal time intervals).

Putnam Exam Challenge

. ) 6k
134. Write I\ZI BT~ 2k = 2N

135. Let f(n) be the sum of the first n terms of the sequence 0, 1,

as a rational number.

1,2,2,3,3,4,. . ., where the nth term is given by
0= n/2, if nis even
2 (n—1)/2, ifnisodd’

Show that if x and y are positive integers and x > y then
xy = fle+y) = flx = y).

These problems were composed by the Committee on the Putnam Prize Comipetition.
© The Mathematical Association of America. All rights reserved.

Section Project: = Cantor’s Disappearing

Table

The following procedure shows how to make a table disappear by
removing only half of the table!

(a) Original table has a length of L.

L

I

(b) Remove i of the table centered at the midpoint. Each

remaining piece has a length that is less than %L.

(c) Remove é of the table by taking sections of length %L from the
centers of each of the two remaining pieces. Now, you have
removed i + % of the table. Each remaining piece has a length
that is less than ﬁL.

(d) Remove % of the table by taking sections of length éL from the
centers of each of the four remaining pieces. Now, you have
removed i + é it % of the table. Each remaining piece has a
length that is less than éL.

Will continuing this process cause the table to disappear, even
though you have only removed half of the table? Why?

FOR FURTHER INFORMATION Read the article “Cantor’s
Disappearing Table” by Larry E. Knop in The College
Mathematics Journal. To view this article, go to the website
www.matharticles.com.




Inscribed rectangles:

i f({i) = area
i=2

a,=f2)
a, =f3)
ay =f(4)

n—1n

Circumscribed rectangles:

n-1
Y. f(i) = area
i=1

a; =f(1)
a, =f(2)
a, =f(3)

an—1=f(n— 1)

Figure 9.8
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J The Integral Test and p-Series

o Use the Integral Test to determine whether an infinite series converges or
diverges.
¢ Use properties of p-series and harmonic series.

The Integral Test

In this and the following section, you will study several convergence tests that apply
to series with positive terms.

THEOREM 9.10 The Integral Test

If f is positive, continuous, and decreasing for x > 1 and a, = f(n), then

EO: a, and f ” f(x) dx
n=1 1

either both converge or both diverge.

Proof Begin by partitioning the interval [1, n] into n — 1 unit intervals, as shown
in Figure 9.8. The total areas of the inscribed rectangles and the circumscribed
rectangles are as follows.

Inscribed area

Z:f(i).=f(2) +f3) + - -+ fln)

Circumscribed area

n—1
> @) =f0)+fQ+- -+ fln—-1)
=1
The exact area under the graph of f from x = 1 to x = n lies between the inscribed
and circumscribed areas.

n—1

anf(i) < jl ' flx)dx < 21 1)

Using the nth partial sum, S, = f(1) + f(2) + - - - + f(n), you can write this
inequality as

S, —f(1) < J”f(x) dx £ S,

Now, assuming that [;° f(x) dx converges to L, it follows that forn > 1
S, —f(1) <L S, < L+ f(1).

Consequently, {S,} is bounded and monotonic, and by Theorem 9.5 it converges. So,
S a, converges. For the other direction of the proof, assume that the improper integral
diverges. Then [] f(x)dx approaches infinity as n—co, and the inequality
S, = [} f(x) dx implies that {S,} diverges. So, Z a, diverges.

NOTE Remember that the convergence or divergence of 2 a,, is not affected by deleting the
first N terms. Similarly, if the conditions for the Integral Test are satisfied for all x 2 N > 1,
you can simply use the integral [ f(x) dx to test for convergence or divergence. (This is illus-
trated in Example 4.)
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 314, use the Direct Comparison Test to determine
the convergence or divergence of the series.

= 1

N ,Zl n?+1 4 ”21 3n?+2
& 1 & 1
5 6. ==
n=2 N = 1 1122 n— 1
o) 1 =) 3n
7 n=0 3"+ 1 8. n=0 4n + 5
& Inn = l
9. 10. —
n=2n+1 ngl n3+ 1
m§L 2§
) n=0 I’L' ) n=14\3/ﬁ - 1
13, e u $4
n=0 n=1 3 — il

In Exercises 15-28, use the Limit Comparison Test to determine
the convergence or divergence of the series.

& n = 2
15. 16.
5 n=1n2+1 6 n§=:13n_5
= 1 = 3
17. — 18.
,,Zo Vn+1 123 Jnt—4
& 2n% — 1 & Sn—3
o nz, 3n°+ 20+ 1 & ,,Z] nr=2n+5

& n+3 =S |

2. n:1W+7) 22. o2+ 1)

23, § L 24§ 2
=1 n2 +1 n=1 (71 + 1)2n 1
00 nk—l 5

25, nzl PranEY k>2 26. ”Z] nvnz—_'_—“.
x .1 & 1

27. n21 sin — 28. ,,21 tan >

In Exercises 29-36, test for convergence or divergence, using
each test at least once. Identify which test was used.

(a) nth-Term Test
(¢) p-Series Test

(b) Geometric Series Test
(d) Telescoping Series Test
(e) Integral Test (f) Direct Comparison Test

(g) Limit Comparison Test

S

29, 30. § 5( —%)

n=0

I\
=

Bl
I
-

. ,21 3+ 2 o2 ,244 3n2 — 2n — 15
=] n = 1 1
33',,212n+3 34',;1<n+1_n+2>
= n =) 3
% 2 1 2wt
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37. Use the Limit Comparison Test with the harmonic series to
show that the series = a, (where 0 < a, < a,_,;) diverges if
lim na, is finite and nonzero.

n—y 00

Prove that, if P(n) and Q(n) are polynomials of degree j and k,
respectively, then the series

38.

= P(n)
n=1 Q(”)

converges if j < k — 1 and diverges if j 2 k— 1.

In Exercises 39—42, use the polynomial test given in Exercise 38
to determine whether the series converges or diverges.
1,2, 3 , 4,53
9. 3+5+tp T
I 1 i
4.3 +5+3tats o
n2
nd+1

a2 S

n=1

41.

“ntl

In Exercises 43 and 44, use the divergence test given in Exercise
37 to show that the series diverges.

=) n3
A3 2 Sn*+ 3

n=1

In Exercises 45-48, determine the convergence or divergence of
the series.
PN WIS W S
200 T 600 T 800

1 1 1
+35 + 20 + 30 T
+3 t 3 ot

1 1 1
+ 38 + 27 togg T

45. 5
46. 55
47. 51
48. 57

Writing About Concepts

49. Review the results of Exercises 45-48. Explain why careful
analysis is required to determine the convergence or diver-
gence of a series and why only considering the magnitudes
of the terms of a series could be misleading.

50. State the Direct Comparison Test and give an example of its

use.

51. State the Limit Comparison Test and give an example of its

use.

52. Tt appears that the terms of the series

1 1 L 1 L.
1000 + 1001 + 1002 L] 1003 +

are less than the corresponding terms of the convergent
series

1+ 240+

If the statement above is correct, the first series converges.
Is this correct? Why or why not? Make a statement about
how the divergence or convergence of a series is affected by
inclusion or exclusion of the first finite number of terms.

{
|
I
1I
|
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Writing About Concepts (continued)

53. The figure shows the first 20 terms of the convergent seties

E a, and the first 20 terms of the series 2 a2 Identify the
n=1 n=1

two series and explain your reasoning in making the
selection.

1.0
‘.
0.8 -fem
Te

0.6 "

0.4 1 .
02f oo,
. =

e
| 4 8 12

-
16 20

& 1
54, Consider th i e P
e onsider the series rzl o = 1)

(a) Verify that the series converges.

(b) Use a graphing utility to complete the table.

n | S| 10| 20| 50| 100

| S

(¢) The sum of the series is 7r2/8. Find the sum of the series

o |
23 n — 1)

(d) Use a graphing utility to find the sum of the series
s ]

n=210 [ZH S ”T

True or False? In Exercises 55-60, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

55. If 0 < a, < b,and Y, a, converges, then Y, b, diverges.
n=1 n=1

[o.2) [e2]
56. If0 < a,, 0 < b, and 2 b, converges, then 2 a, converges.
n=1

n=1
O
2 o

[o )
Ifa +b, <c, and c. converges, then the series
n n n n
n=1

n=1
[vle)
and 2 b, both converge. (Assume that the terms of all three
n=1
series are positive.)

Sills

58. Ifa, < b, + ¢, and 2 a, diverges, then the series 2 b, and
n=1 n=1

E ¢, both diverge. (Assume that the terms of all three series
n=1
are positive.)

59, If 0 < a, < b, and 2 a, diverges, then E b, diverges.

n=1 n=1
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EXAMPLE 7 Rearrangement of a Series
I ———

FOR FURTHER INFORMATION Georg The alternating harmonic series converges to In 2. That is,

Friedrich Riemann (1826-1866) proved =

that it 2 a,, is conditionally convergent 2 (—1)r+1 1 1 1 + 1.1 ++ .. =12 (See Exercise 49, Section 9.10.)
and § is any real number, the terms of n=1 n 1 2 3 4

the series can be rearranged to converge
to S. For more on this topic, see the
article “Riemann’s Rearrangement
Theorem” by Stewart Galanor in
Mathematics Teacher. To view this 1
article, go to the website IS5
www.matharticles.com.

Rearrange the series to produce a different sum.

Solution Consider the following rearrangement.

1
1*2+§‘4+§‘3+?—'“>—5®”

By rearranging the terms, you obtain a sum that is half the original SUM.  sesm——

See www.CalcCh

at.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, match the series with the graph of its sequence = 10 & (=110
of partial sums. [The graphs are labeled (a), (b), (¢), (d), (e), and S o non N ,,21 n2n
().]

fdp Numerical and Graphical Analysis  In Exercises 7-10, explore
the Alternating Series Remainder.

@ s, (b)

(a) Use a graphing utility to find the indicated partial sum S,
and complete the table.

HH ‘7 tj2[s3]4a]s]6[7 JE 10|
© s, @ s, & ' ' ’ ’

A
5-4e 10 | eo00000 (b) Use a graphing utility to graph the first 10 terms of the
47 atececnes 5T o° sequence of partial sums and a horizontal line representing
; I_ Z I_' the sum,
14 2 (c) What pattern exists between the plot of the successive points
—I‘J e e :| el in part (b) relative to the horizontal line representing the
s g 4 4 ¢ §do sum of the series? Do the distances between the successive
© s ) 5 points and the horizontal line increase or decrease?
. s ] _f". (d) Discuss the relationship between the answers in part (c) and
¢ T eo0®00000e 5 ‘ o%e%ecane the Alternating Series Remainder as given in Theorem 9.15.
1o 44
44 3| o0 (-1)”_1_7T
2] f[' 7'n§=:12n—1—4
[FHH o HH e < (—1)p-1
2 4 6 8 10 I 2 4 6 8 10 . ==
8 ,,Zl (n—1) e
x 4 oy (,_”u-lﬁ o (_l)n~] 77.2
1. e — ==
=y n? i nzl n? i 1121 n? 1
® 3 oy [_Uu 13 © (_l)u—l .
3' . 4. ————— . — =
,21 nl ,;::1 ! . ,2, @n -1 sl



In Exercises 11-32, determine the convergence or divergence of
the series.

o (_l)il+l = (_l |l|||
11. ”Zl . 12. H),I e ,

© (_ 1)n+l {:_\ (_ ”u
13. & 2n—1 I A n(n + 1)

0 (_ l)n n2 oo ( 1)n+l n
= uzl n* +1 16 /le n® +1

o (_ 1)n < (_ 1)n+1 n?

) 18. ————

Y 'Zl Jn 5 nzl n’ +5

=) (_1)u+l(” + ]) o ( 1)n+1ln(n _)
19. ,Zl In(n + 1) el ”21 n+1
21. 'Zl sinw 22, ”Zl%sm(—%;—l)w
23. D cosnmw 24. T

n=1 n=1

© (__ 1)n o) (_ 1)n
25. "ZO - 26. 2 on 1!

oo u+l o [(— 1+l
p § U 28 § C S

n=1 n+ 2 n=1 \3/;

(_ 1)n+1 n!

29,

[\

c3:5---02n—1)
1-3-5--(2n—1)

N —_ 1)+l =—— ==X
30'"21( D 1+4-7---(Bn—2)
31 i 2z i 1)**!cschn

* = et — e =
32 f} 2 i 1)+ sech n
. = et 4 et =

In Exercises 33-36, approximate the sum of the series by using
the first six terms. (See Example 4.)

”:(—l)”"j oo n+14
2 E n* 2 ln(n + 1)

n=1 n=1
[ ) oo (_ I)JI’ +1 n
Conl 36. E—;”

.,,
Ms

35,

In Exercises 37-42, (a) use Theorem 9.15 to determine the
number of terms required to approximate the sum of the
convergent series with an error of less than 0.001, and (b) use a
graphing utility to approximate the sum of the series with an
error of less than 0.001.

& (-1 _1 & (1 _ L
. MZO nl e 38 nZO 2nl Ve
o (_ )n B
39. ,Zo n + 1)1 =sin 1
00 (_ l)n _
40. "ZO @n)! =cos 1
oo —_ 1)\ t1
41. 2( D 2
n=1 n
oo (— 1)+l
42, 2( ,3, =

E]
i

{l
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In Exercises 43-46, use Theorem 9.15 to determine the
number of terms required to approximate the sum of the series
with an error of less than 0.001.

o) (_ 1)n+1 oo ( 1)n+l
43. 44, -
’ IZI n3 ,Z] Yl2
o) ( 1)n+ L 0 ( 1)n+l
45. 2 1 46. 2 n

=
1}
I

In Exercises 47-62, determine whether the series converges
conditionally or absolutely, or diverges.

[y (_1):1+1 =) (_1)n+]
47. 2ty 48. ”Zl —

o = l‘u-l-l = (_ l)rl+l
49, — 50. E

,,Z| \-"(” n=1 I’L\/_l’i

o (_ l]rr-—l n? = (_ 1)”“(2n + 3)
5 s e . awl o = = = B
! ,zﬂ (n + 1)* N ,21 n+ 10

o (_ ”N =2 2
5 i 3 — n n
3 “_E__E Inn B nZO( Lyre

== {_l)rr” ) ( 1)n+l
55. T .
2 n=2 ”‘J - | 36 n§=:1 nLS

& (1)
ST. nzo (2n + 1)

& (-1
58. N

,ZO ~ R + 4

S cos nar
59. ”20 o
60. > (—1)"*!arctann

n=1

X cos nT
6l. 2 2

n=1

sin[(2n — 1)m/2)

(N

62.
n

Writing About Concepts

63. Define an alternating series and state the Alternating Series
Test.

I
=

64. Give the remainder after N terms of a convergent alternat-
ing series.

65. In your own words, state the difference between absolute
and conditional convergence of an alternating series.

66. The graphs of the sequences of partial sums of two series
are shown in the figures. Which graph represents the partial
sums of an alternating series? Explain.

@ S () 3,
I
1- 44 @
°
B N  ( 3 °
2 4 6
-1 2 R .
21+ e |+ ]
[ ]
_3*- Ceee e i =
2 4 6
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In Exercises 37— 50, use the Root Test to determine the conver-
gence or divergence of the series.

e) n n e s 2]1 n
ol nzl <2n + 1) 38. ”ZI (n + 1)
KX [2n + 1) & [4n + 3\
9. 2
3 "22<}’l_1> 10 nzl (2"’_1)

. I)H
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41. 42.
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+
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43, 44.

i
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1
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45. 46.

]
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|
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v

n (o] 11'1 n
47, > 48. —)
n=| nZ 1 n
=) n oo (Il')”
49. 50.
”22 (ln n)n nzl (nu)Z

In Exercises 51-68, determine the convergence or divergence of
the series using any appropriate test from this chapter, Identify
the test used.

o) i n+1 [e's)
si. 8 (li\s 52. Zj%

= 5 = /o \n
53. ”Z] — 54. ,121 (jf)
== ,2] n Tl L ,:1 2n2n+ 1
57. :21 (—1)2’;3_”22_ 58. ’2 ; \1/0?
59. :1 1022:’ i 60. :. 4’122"_ 1
61. ’2 . 62. 2 51‘1111)’1 :
63. ”: ’;i, 6. 2 h;—z"
65. 2 —\(’131' '!3”_' 66. 12 (—n12)',:3”
e. ”: 3 5—7(——3}@ e
68. f 3:5:7--(2n+1)

\ 18"(2n — 1)n!

i

n

In Exercises 6972, identify the two series that are the same.
(oo} nsn 3 n
69. (a) Z T 70. (a) n(Z>

s ® S+ 1)(2)

n=0

3 n—1
)

b8

[o=} n5u
® > T

n=0

& (n+ 150!
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@ » 7 wars (c)

< (n+ 1)

1
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e 5y o (=1
7o 00 ,2:“ (20 + 1) . @) ”_Z__. (n— 1)20-1

; = |- |)u | = {'_”nil
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(c) (c)

& 20+ 1)1 &+ 12
In Exercises 73 and 74, write an equivalent series with the index
of summation beginning at » = 0,

211

SR
™ aw P

n=1

In Exercises 75 and 76, (a) determine the number of terms
required to approximate the sum of the series with an error less
than 0.0001, and (b) use a graphing utility to approximate the
sum of the series with an error less than 0.0001.

&K (=3 = (=3)
75';, 2%k! 76',\201-3-5~-(2k+_)

In Exercises 77-82, the terms of a series E a, are defined
n=1

recursively. Determine the convergence or divergence of the
series, Explain your reasoning.

1 4n ~ 1
77. a, = E’ an+l = man
+
78. a, = 2’ an+l = EZ _ ian
i +1
79. a, = 1’an+1 = snlnTan
n
+
80. a = é’ Ay = C_OS:; 1(1”
81. g, = %, Ay = (1 + %)an
1
82‘ a, = Z’ au+l = an

In Exercises 83-86, use the Ratio Test or the Root Test to deter-
mine the convergence or divergence of the series.

Sl LS I L
84, 1+§+3—32+513+%+3%+‘ ¥
85.ﬁ+0—nl@+ﬁ+ﬁ+- -

1-3 1:3-5
86'1+1-2-3+1_-2-3-4 5
1-3:5-7
1234, 6.7



In Exercises 87-92, find the values of x for which the series
converges.

[e=) X n
87. "20 2<§>

x (x+ 1\
8. nzo( : )

& (—DMx+ 1)
89. ;::1 =
90. i 2 — 1)"

n=0
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=
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Writing About Concepts

93. State the Ratio Test.
94, State the Root Test.

95. You are told that the terms of a positive series appear to
approach zero rapidly as n approaches infinity. In fact,
a, < 0.0001. Given no other information, does this imply
that the series converges? Support your conclusion with
examples.

96. The graph shows the first 10 terms of the sequence of
partial sums of the convergent series

i <3n2—r|l- 2>n'

n=1

Find a series such that the terms of its sequence of partial
sums are less than the corresponding terms of the sequence
in the figure, but such that the series diverges. Explain your

reasoning.
Sll
)
3
2
1+ eo0®®®
I o
1 L]
27 e
I e e B B R R
2 4 6 10

97. Using the Ratio Test, it is determined that an alternating
series converges. Does the series converge conditionally or
absolutely? Explain.

98. Prove Property 2 of Theorem 9.17.

SECTION 9.6 The Ratio and Root Tests 047

99, Prove Theorem 9.18. (Hint for Property 1: If the limit equals
r < 1, choose a real number R such that r < R < 1. By the
definitions of the limit, there exists some N > 0 such that

%/]a,| < Rforn > N.)

100. Show that the Root Test is inconclusive for the p-series
N
n=1 nV

101. Show that the Ratio Test and the Root Test are both inconclu-
sive for the logarithmic p-series

i 1
<, n(ln n)?”

n=

102. Determine the convergence or divergence of the series

o) (n!)2

xn)!

n=1
when (a) x = 1, (b) x = 2, (c) x = 3, and (d) x is a positive
integer.

103. Show that if 2 a, is absolutely convergent, then

n=1

[=.o)
< 2 lal-
n=1

104. Writing Read the article “A Differentiation Test for
Absolute Convergence” by Yaser S. Abu-Mostafa in
Mathematics Magazine. Then write a paragraph that describes
the test. Include examples of series that converge and exam-
ples of series that diverge.

Putnam Exam Challenge

105. Ts the following series convergent or divergent?

1 19  21/19\2 3119\ = 4!{/19}*
+ —_ . — —_ — —_] — —_] — ]
I+33 +347> +447) +547> -

106. Show that if the series

==y
2
n=1

at+tata+---+a, +

n

converges, then the series

a a a
a|+72+§3+---+;"+---

converges also.

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Taylor Polynomials and Approximations

* Find polynomial approximations of elementary functions and compare them with
the elementary functions.

* Find Taylor and Maclaurin polynomial approximations of elementary functions.

¢ Use the remainder of a Taylor polynomial.

Polynomial Approximations of Elementary Functions

The goal of this section is to show how polynomial functions can be used as
approximations for other elementary functions. To find a polynomial function P that
approximates another function f, begin by choosing a number ¢ in the domain of f at
which f and P have the same value. That is,

P(c) =f(c) P(c) = f(c). Graphs of f and P pass through (c, f(c)).

P(c)=f"(c)

The approximating polynomial is said to be expanded about ¢ or centered at c.
Geometrically, the requirement that P(c) = f(c) means that the graph of P passes
(e f(e)) through the point (c, f (c)). Of course, there are many polynomials whose graphs pass
through the point (c, f(c)). Your task is to find a polynomial whose graph resembles
the graph of f near this point. One way to do this is to impose the additional require-

P ment that the slope of the polynomial function be the same as the slope of the graph
- x of f at the point (c, f (c)).
P(c) = flc Graphs of f and P have the same slope at (c, f (c)).
Near (c, f(c)), the graph of P can be used to (€)= f1e) B
approximate the graph of f. With these two requirements, you can obtain a simple linear approximation of f, as
Figure 9.10 shown in Figure 9.10.

EXAMPLE | First-Degree Polynomial Approximation of f(x) = e*

For the function f(x) = e find a first-degree polynomial function
Pi(x) = ay+ apx

whose value and slope agree with the value and slope of f at x = 0.

Solution  Because f(x) = ¢* and f'(x) = ¢* the value and the slope of f, at x = 0,

are given by
J)y=¢e"=1
and
F0) =e" = 1.

Because P,(x) = a, + a,x, you can use the condition that P,(0) = £(0) to conclude
that a, = 1. Moreover, because P,’(x) = a,, you can use the condition that P,’(0) =

| 2 f(0) to conclude that a; = 1. Therefore,
P, is the first-degree polynomial P =1+
approximation of f(x) = e-*. @) .
Figure 9.11 Figure 9.11 shows the graphs of P,(x) = 1 + xand f(x) = e*. —

NOTE Example 1 isn’t the first time you have used a linear function to approximate another
function. The same procedure was used as the basis for Newton’s Method.



2
2

P, is the second-degree polynomial
approximation of f(x) = e%
Figure 9.12

=

v N

P; is the third-degree polynomial
approximation of f(x) = e~
Figure 9.13

SECTION 9.7 Taylor Polynomials and Approximations 649

In Figure 9.12 you can see that, at points near (0, 1), the graph of
P|(x) =1+ux 1st-degree approximation

is reasonably close to the graph of f(x) = e* However, as you move away from (0, 1),
the graphs move farther from each other and the accuracy of the approximation
decreases. To improve the approximation, you can impose yet another requirement—
that the values of the second derivatives of P and f agree when x = 0. The polynomial,
P,, of least degree that satisfies all three requirements P,(0) = £(0), P,"(0) = f/(0),
and P,”(0) = £7(0) can be shown to be

1
Pz(x) =1+x+ Exz. 2nd-degree approximation
Moreover, in Figure 9.12, you can see that P, is a better approximation of f than P,.
If you continue this pattern, requiring that the values of P, (x) and its first n derivatives

match those of f(x) = e* at x = 0, you obtain the following.

1 1 1
Px)=1+x+-x>+=-x34+-- -4+ —x" nth-degree approximation
. 2 3! n!

= X

EXAMPLE 2 Third-Degree Polynomial Approximation of f(x) = e*

Construct a table comparing the values of the polynomial

1 1
P3(x) =1+x+ E)C2 + §x3 3rd-degree approximation

with f(x) = e* for several values of x near 0.
Solution Using a calculator or a computer, you can obtain the results shown in the

table. Note that for x = 0, the two functions have the same value, but that as x moves
farther away from 0, the accuracy of the approximating polynomial P4(x) decreases.

x —1.0 —-0.2 —0.1 0 0.1 0.2 1.0
ex 0.3679 [0.81873 | 0.904837 | 1 | 1.105171 | 1.22140 | 2.7183
Py(x) | 0.3333 |0.81867 | 0.904833 | 1 | 1.105167 | 1.22133 | 2.6667

TECHNOLOGY A graphing utility can be used to compare the graph of the
approximating polynomial with the graph of the function f. For instance, in Figure
9.13, the graph of

P3(x) =1+x+ %xz + éx3 3rd-degree approximation

is compared with the graph of f(x) = e*. If you have access to a graphing utility,
try comparing the graphs of

P4(x) =1+x+ %xz + éx3 + ix“ 4th-degree approximation
PS()C) =1+x+ %xz + éx3 + 21—4x4 = ﬁxs 5th-degree approximation
P6(x) =1+x+ %xz + %xa + 21—4x4 + ﬁxS + 7%)66 6th-degree approximation

with the graph of f. What do you notice?
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The Granger Collection

Brook TayLor (1685-1731)

Although Taylor was not the first to seek
polynomial approximations of transcendental
functions, his account published in 1715 was
one of the first comprehensive works on the
subject.

NOTE Maclaurin polynomials are
special types of Taylor polynomials for
which ¢ = 0.

FOR FURTHER INFORMATION To

see how to use series to obtain other
approximations to e, see the article
“Novel Series-based Approximations to
¢” by John Knox and Harlan J. Brothers
in The College Mathematics Journal.
To view this article, go to the website
www.matharticles.com.

Taylor and Maclaurin Polynomials

The polynomial approximation of f(x) = e* given in Example 2 is expanded about
¢ = 0. For expansions about an arbitrary value of ¢, it is convenient to write the
polynomial in the form

Px)=as+alx—c)+ax—c?+ax—cP+-- +alx—o

In this form, repeated differentiation produces
P/(x) = a; + 2a,(x — ¢) + 3a5(x — )2+ - - - + na,(x — c)"~!
P"(x) = 2a, + 2(3a)x —c) + - - - + n(n — Da,(x — )2
P”(x) =2(3ay) +- - -+ nn— Dn—2)a,lx— )3

PPG) =nn - Dn—2) - 2(Va

Letting x = ¢, you then obtain

nt

P()=a, Pc)=a, P'(c)=2ay, ..., PYc)=nla,

and because the value of f and its first n derivatives must agree with the value of P,
and its first # derivatives at x = ¢, it follows that
; "(c) AR
fle) =ay  flc) = a,, fT=a2, Co T T A
With these coefficients, you can obtain the following definition of Taylor polynomials,
named after the English mathematician Brook Taylor, and Maclaurin polynomials,
named after the English mathematician Colin Maclaurin (1698-1746).

Definitions of nth Taylor Polynomial and nth Maclaurin Polynomial

If f has n derivatives at ¢, then the polynomial

P =10 + O — )+ L — o g - L0y

2! n!

is called the nth Taylor polynomial for f at c. If ¢ = 0, then

P, (x) = £(0) + f(0)x + %('O)xz + %'(O))ﬁ + -+ %x”

is also called the nth Maclaurin polynomial for f.

EXAMPLE 3 A Maclaurin Polynomial for f(x) = e*
Find the nth Maclaurin polynomial for f(x) = e*.

Solution From the discussion on page 649, the nth Maclaurin polynomial for
f&) = e

is given by

1 1 1
Px)=1+x+ x4+ =x34+ -« +—=x"
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EXAMPLE 4 Finding Taylor Polynomials for In x

Find the Taylor polynomials P,, P,, P,, P;, and P, for f(x) = In x centered at ¢ = 1.

Solution Expanding about ¢ = 1 yields the following.

fx) =Inx fA)=1=0
0 =1 Fay=1=1
00 = 3 £y = =5 = -1
=5 ) =5 =2
@) = —% Fa(1) = _% - 6

Therefore, the Taylor polynomials are as follows.

Po(x) zf(l) =0
P =f0)+fMx-1)=x-1)

P =) + )G — 1) + Dl 1y

= (= 1) - (- 12

P = £0) + 0 — 1) + B - 2 F - e

= (= 1) = 30— D2 3 12

L”(l_)(x — 1)3

P = £ + £~ 1)+ Dl — 2+ £

O, .
+ 1 (x—1)
e oLzl L e
=x—-1 2(x 1) +3(x 1) 4(x 1)
Figure 9.14 compares the graphs of P,, P,, P;, and P, with the graph of f(x) = Inx.
Note that near x = 1 the graphs are nearly indistinguishable. For instance, P,(0.9) =
—0.105358 and In(0.9) =~ —0.105361.

As n increases, the graph of P, becomes a better and better approximation of the graph of f(x) = Inxnearx = .
Figure 9.14 e — =
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Exercises for Section 9.7

In Exercises 14, match the Taylor polynomial approximation
of the function f(x) = e*"/> with the correct graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) y (b) ¥y
2 ' 2
-2 -1 1 2 -2 1 2
—1 1~ b1
-2 f A1
(© ¥ (d) ¥
\ 1 I, .
-2 —1_I 1 2 3 _1_1 | 1 N2
=) 2

1. glx) = —%xz +1

2. glx) = %x“ . %xz +1

3.g) =[x+ 1) + 1]

4. g() = e 3x — 1P — (x = 1) + 1]

HV In Exercises 5-8, find a first-degree polynomial function P,
whose value and slope agree with the value and slope of f at
x = ¢. Use a graphing utility to graph f and P,. What is P,
called?

5-f(x)=%, c=1 6.f(x)=\3/i)_c-, c=8

7. f(x) =secx, ¢ =7ZT 8. f(x) =tanx, ¢ = %

f%’ Graphical and Numerical Analysis In Exercises 9 and 10, use a
graphing utility to graph f and its second-degree polynomial
approximation P, at x = ¢. Complete the table comparing the
values of f and P,.

9. flx) = %, c=1
Pyx) =4 —2(x — 1) + 3(x — 1)
x 0 [08 |09 | 1 |11 ] 12| 2
f&)
Pz(x)

See www.CalcChat.com for worked-out solutions to odd-numbered exercises

10. f(x) =secx, ¢ = ?IT
2
Py(x) = J2 + \/§<x — 727-) —+ %ﬁ(x - %T)
x —2.15 | 0.585 | 0.685 %T 0.885 | 0.985 | 1.785
Sfx)
Pz(x)

11. Conjecture Consider the function f(x) = cosx and its
Maclaurin polynomials P,, P,, and P, (see Example 5).

(a) Use a graphing utility to graph f and the indicated polyno-
mial approximations.

(b) Evaluate and compare the values of f®(0) and P{(0) for
n=2,4, and 6.

(c) Use the results in part (b) to make a conjecture about f@(0)
and P(0).

12. Conjecture Consider the function f(x) = x%~.
(a) Find the Maclaurin polynomials P,, P;, and P, for f.
{'-‘l” (b) Use a graphing utility to graph f, P,, P;, and P,.

(c) Evaluate and compare the values of £¢(0) and P{(0) for
n = 2,3, and 4.

(d) Use the results in part (c) to make a conjecture about £(0)
and P®)(0).

In Exercises 13-24, find the Maclaurin polynomial of degree n
for the function.

13, f(x) =e¢™, n=3 14, fx) =e™ n=5

15. f(x) = e, n=4 16. f(x) =e>, n=4

17. f(x) =sinx, n=25 18. f(x) =sinmx, n=23

19. f(x) =xe*, n=4 20, f(x) =x%*, n=4
1 X

21, f(x) = rana 4 22. flx) = i T

23. f(x) =secx, n=2 24. f(x) =tanx, n=

In Exercises 25-30, find the nth Taylor polynomial centered
atc.

27. f(x) = Vx, n=4, c=1
28. f(x) =¥x, n=3, c=38
29, f(x) =Inx, n=4, c=1

30. f(x) =x*cosx, n=2, ¢c=7
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H’ In Exercises 31 and 32, use a computer algebra system to find In Exercises 37-40, the graph of y = f(x) is shown with four of
the indicated Taylor polynomials for the function f. Graph the its Maclaurin polynomials. Identify the Maclaurin polynomials
function and the Taylor polynomials. and use a graphing utility to confirm your results.

31. f(x) = tanx 32. fx) = 5 38. y = arctan x
X+ 1 Il /
2 III
(@n=3 c¢c=0 @n=4, ¢c=0
byn=3 c=mu/4 b)yn=4 c=1

A
17 33. Numerical and Graphical Approximations

(2) Use the Maclaurin polynomials P, (x), P5(x), and Ps(x) for
F(x) = sin x to complete the table.

x o 025 | 050 | 075 | 100 | 39. Vo omeren Yy e
sinx | 0 | 02474 | 04794 | 0.6816 | 0.8415 . 31 |/ i .
Py(x) - \ /
Py(x)
Py(x) |
(b) Use a graphing utility to graph f(x) = sinx and the

Maclaurin polynomials in part (a).
In Exercises 41-44, approximate the function at the given value

Describe the change in acc f 1 ial approxi-
(¢) Describe change In accuracy ol @ polynomia’ approxi of x, using the polynomial found in the indicated exercise.

mation as the distance from the point where the polynomial
is centered increases. 41. f(x) = e, f(%), Exercise 13
fdP' 34, Numerical and Graphical Approximations 42, f(x) = x%, f(é), Exercise 20

(a) Use the Taylor polynomials P, (x), P,(x), and P,(x) for 43. f(x) = Inx, f(1.2), Exercise 29
f(x) = In x centered at ¢ = 1 to complete the table.

_ - 44, f(x) = x*cosx, f (%T), Exercise 30
x 1.00 1.25 1.50 1.75 2.00
Inx 0 0.2231 | 0.4055 | 0.5596 | 0.6931 In Exercises 45—48, use Taylor’s Theorem to obtain an upper
T( I I bound for the error of the approximation. Then calculate the
1) ] exact value of the error.
Pyx) (
0.3)2 , (0.3)
= } B)=1—-F—+—-
P ) 45, co0s(0.3) o A
2 3 4 5
- PSS O I &
(b) Use a graphing utility to graph f(x) = Inx and the Taylor 2t 31 41 5!
polynomials in part (a). (0.4)? (0.4)°
47. in(0.4) = 04 + —— . 4) =04 — ——
(¢) Describe the change in accuracy of polynomial approxima- (G O 2-3 48, erctan(0.4) [ Ok 3

tions as the degree increases.

In Exercises 49-52, determine the degree of the Maclaurin
Numerical and Graphical Approximations In Exercises 35 and polynomial required for the error in the approximation of the
36, (a) find the Maclaurin polynomial Ps(x) for f (x), (b) function at the indicated value of x to be less than 0.001.
complete the table for f(x) and P;(x), and (c) sketch the graphs

of f(x) and P3(x) on the same set of coordinate axes. 49. sin(0.3) 50. cos(0.1)
) 51. % 52. 03
x —-0.75 | —050 | —0.25| 0| 0.25 | 050 | 0.75
i HU' In Exercises 53-56, determine the degree of the Maclaurin
i(x) polynomial required for the error in the approximation of the
P,(x) function at the indicated value of x to be less than 0.0001. Use a
computer algebra system to obtain and evaluate the required
derivatives.
35, f(x) = arcsin x 36. f(x) = arctanx

53. f(x) = In(x + 1), approximate f(0.5).
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54. f(x) = cos(mrx?, approximate f£(0.6).
55. f(x) = e~™, approximate £(1.3).
56. f(x) = e~ approximate f(1).

In Exercises 57-60, determine the values of x for which the
function can be replaced by the Taylor polynomial if the error
cannot exceed 0.001.

2 3
57. f(x)=exz1+x+x—|+x—

) 3 x <0
Pe
58. f(x)=sinx~x—§
x> x*
59. f(x)—cosx%l—a+a

60. f(x) =e 2 ~1—2x+ 2% — §x3

Writing About Cbncepts

61. An elementary function is approximated by a polynomial.
In your own words, describe what is meant by saying that
the polynomial is expanded about c or centered at c.

62. When an elementary function f is approximated by a
second-degree polynomial P, centered at ¢, what is known
about f and P, at ¢? Explain your reasoning.

63. State the definition of an nth-degree Taylor polynomial of f
centered at c.

64. Describe the accuracy of the nth-degree Taylor polynomial
of f centered at ¢ as the distance between ¢ and x increases.

65. In general, how does the accuracy of a Taylor polynomial
change as the degree of the polynomial is increased?
Explain your reasoning.

66. The graphs show first-, second-, and third-degree polyno-
mial approximations P, P,, and P, of a function f. Label
the graphs of P, P,, and P;. To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

67. Comparing Maclaurin Polynomials

(a) Compare the Maclaurin polynomials of degree 4 and
degree 5, respectively, for the functions f(x) = ¢* and
g(x) = xe*. What is the relationship between them?

(b) Use the result in part (a) and the Maclaurin polynomial of
degree 5 for f(x) = sin x to find a Maclaurin polynomial of
degree 6 for the function g(x) = x sin x.

68.

69.

70.

71.

72.

73.

(¢) Use the result in part (a) and the Maclaurin polynomial of
degree 5 for f(x) = sin x to find a Maclaurin polynomial of
degree 4 for the function g(x) = (sin x)/x.

Differentiating Maclaurin Polynomials

(a) Differentiate the Maclaurin polynomial of degree 5 for
f(x) = sinx and compare the result with the Maclaurin
polynomial of degree 4 for g(x) = cos x.

(b) Differentiate the Maclaurin polynomial of degree 6 for
f{x) = cos x and compare the result with the Maclaurin
polynomial of degree 5 for g(x) = sin x.

(c) Differentiate the Maclaurin polynomial of degree 4 for
fx) = ¢*. Describe the relationship between the two
series.

Graphical Reasoning The figure shows the graph of the
function

fx) = sin<?>

and the second-degree Taylor polynomial

Px)=1-— 3—2(x - 2)2

centered at x = 2.

Pyx)

(a) Use the symmetry of the graph of f to write the second-
degree Taylor polynomial for f centered at x = —2.

(b) Use a horizontal translation of the result in part (a) to find
the second-degree Taylor polynomial for f centered at
x = 6.

(c) Is it possible to use a horizontal translation of the result in
part (a) to write a second-degree Taylor polynomial for f
centered at x = 4? Explain.

Prove that if f is an odd function, then its nth Maclaurin
polynomial contains only terms with odd powers of x.

Prove that if f is an even function, then its nth Maclaurin
polynomial contains only terms with even powers of x.

Let P,(x) be the nth Taylor polynomial for f at c. Prove that
P.(c) = flc) and PW(c) = f®(c) for 1 < k < n. (See Exercises
9 and 10.)

Writing  The proof in Exercise 72 guarantees that the Taylor
polynomial and its derivatives agree with the function and its
derivatives at x = ¢. Use the graphs and tables in Exercises
33-36 to discuss what happens to the accuracy of the Taylor
polynomial as you move away from x = c.
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sction 9.8  § Power Series

e Understand the definition of a power series.

o Find the radius and interval of convergence of a power series.
¢ Determine the endpoint convergence of a power series.

¢ Differentiate and integrate a power series.

Power Series

In Section 9.7, you were introduced to the concept of approximating functions by
Taylor polynomials. For instance, the function f(x) = e* can be approximated by its

EXPLORATIO

Graphical Reasoning Use a graphing Maclaurin polynomials as follows.
utility to approximate the graph of )
each power series near x = 0. (Use er~1+x 1st-degree polynomial
the first several terms of each series.) N — x2 )
Each series represents a well-known . SRR 2nd-degree polynomial
function. What is the function? 5 3
X X
o (= 1) eF=1+x+ 51 + 30 3rd-degree polynomial
. nZO n! 2 B x4
b i (_é)’;fzn ef=1+x+ 5 + a T E 4th-degree polynomial
R 2 3 4 5
x* x| X X
& (—1)yx?t! e=1+x+—=-+—-+—-+_ 5th-degree polynomial
C. E —(m‘ 2! 31 41 St
n=0 P
o 8 (—1)rx2+! In that section, you saw that the higher the degree of the approximating polynomial,
i ,,20 2n +1 the better the approximation becomes.
o Jny In this and the next two sections, you will see that several important types of
€. ZO nl functions, including

f) = e
can be represented exactly by an infinite series called a power series. For example,
the power series representation for e* is
2 3 n
X2 x X
X — E— —_— s w e _— @ s
e l+x+2!+3!+ +n!+ s
For each real number x, it can be shown that the infinite series on the right converges
to the number e*. Before doing this, however, some preliminary results dealing with
power series will be discussed—beginning with the following definition.

Definition of Power Series
If x is a variable, then an infinite series of the form

[e.e]

n — 2 3 . E K n : B E
Eanx—ao+a1x+a2x + ax’ + + g, x" +
n=0

is called a power series. More generally, an infinite series of the form

2a”(x—c)"=a0+a1(x—c)+a2(x—c)2+- cetag k=t

n=0

‘ is called a power series centered at ¢, where c is a constant.

NOTE To simplify the notation for power series, we agree that (x—c)P=1l,evenifx =c
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EXAMPLE I Power Series
—————" =

a. The following power series is centered at 0.
[ele] xll

2 3
E_:1+x+x_+x_+...
= ! 2 3l

b. The following power series is centered at — 1.
DD F ) =l D)+ D= (e DA
n=0

c. The following power series is centered at 1,

rzli(x—1)”=(x—1)+%(x—1)2—|-%(x—1)3+< " x

Radius and Interval of Convergence

A power series in x can be viewed as a function of x

O
A single point f(x) = E an(x _ C)n
n=0

=3 —_ -
c . . .
where the domain of f is the set of all x for which the power series converges.

Determination of the domain of a power series is the primary concern in this section.

An interval : :
o ( ) B - Of course, every power series converges at its center ¢ because
\._._,_)C\_.V,_.J o
R R f(C) = E an(c — C)”
n=0
The real line =a(1)+0+0+---+0+-
4_ ! & = a,.

c

The domain of a power series has only So, ¢ always lies in the domain of f. The following important theorem states that the

three basic forms: a single point, an interval domain of a power series can take three basic forms: a single point, an interval
centered at ¢, or the entire real line. centered at ¢, or the entire real line, as shown in Figure 9.17. A proof is given in
Figure 9.17 Appendix A.

THEOREM 9.20 Convergence of a Power Series

For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists a real number R > 0 such that the series converges absolutely for
|x — ¢| < R, and diverges for |x — ¢| > R.

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series
converges only at ¢, the radius of convergence is R = 0, and if the series
converges for all x, the radius of convergence is R = oo. The set of all values of
x for which the power series converges is the interval of convergence of the
power series.




STUDY TIP To determine the radius of
convergence of a power series, use the
Ratio Test, as demonstrated in Examples
2,3, and 4.
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EXAMPLE 2 Finding the Radius of Convergence

o]
Find the radius of convergence of 2 nlx",
n=0

Solution For x = 0, you obtain

=S nor=1+0+0+- =1

n=0

For any fixed value of x such that |x| > 0, let u, = nlx". Then

im [Aaz| = gy [ F DB
n—ooo | U, n—co nix"
= |x| lim (n + 1)
n—oo
= go.

661

Therefore, by the Ratio Test, the series diverges for |x| > 0 and converges only at its

center, 0. So, the radius of convergence isR = 0.

EXAMPLE 3 Finding the Radius of Convergence

Find the radius of convergence of

2 3 — 2
n=0
Solution For x # 2, let u, = 3(x — 2)". Then
: Ups1] _ o 3(.76 - 2)”+1
nlggo U, nllmo 3(x - 2)"
= lim |x — 2]
n—o0
= |x = 2|.

By the Ratio Test, the series converges if |x — 2| < 1 and diverges if |x — 2| > 1.

Therefore, the radius of convergence of the series is R = 1.

EXAMPLE 4 Finding the Radius of Convergence
[k =S —

Find the radius of convergence of
{ 1 ]u x2n +1

Z 2n+1)"

Solution Letu, = (—1yx**+1/(2n + 1)!. Then

(_ 1)n+1 x2n+3

lim ‘EEL'—“ = fim |22t A
noeco | U, =500 (_ l)n x2n+1
@2n + 1)
x2

= 0m GnF3)n + 2)

For any fixed value of x, this limit is 0. So, by the Ratio Test, the series converges for

all x. Therefore, the radius of convergence is R = oo.
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Endpoint Convergence

Note that for a power series whose radius of convergence is a finite number R,
Theorem 9.20 says nothing about the convergence at the endpoints of the interval of
convergence. Each endpoint must be tested separately for convergence or divergence.
As a result, the interval of convergence of a power series can take any one of the six
forms shown in Figure 9.18.

Radius: 0 Radius: co

Radius: R

:
b
"
1

(c—R, c+R) (c—=R, c+R] [c—R, ¢c+R) [c—R, c+R]

Intervals of convergence
Figure 9.18

@ EXAMPLE 5 Finding the Interval of Convergence
i EE——

) . & X"
Find the interval of convergence of ¥
a=1 N

Solution  Letting u, = x"/n produces

xn+]
lim Bt = g (2D
n—co | U, n—co x"
n
= I nx
h nlglo n+1
= |x.

So, by the Ratio Test, the radius of convergence is R = 1. Moreover, because the
series is centered at 0, it converges in the interval (=1,1). This interval,
however, is not necessarily the interval of convergence. To determine this, you must
test for convergence at each endpoint. When x = 1, you obtain the divergent harmonic

series

&1 1 1 1

—=c ot Di h

,,21 n 1 23 '
When x = —1, you obtain the convergent alternating harmonic series

& (—1)n 1 1 1

=-l4+-—=+=-—. .. ges when
E " 1 ) 3 4 Converges when x 1

n=1

So, the interval of convergence for the series is [—1, 1), as shown in Figure 9.19,

Interval: [~1, 1)
Radius: R=1
B

L

-1 fod

=X

I A
o
e

Figure 9.19 —— =



Interval: (=3, 1)
Radius: R=2

‘ |
{ .
3 2

Figure 9.20
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EXAMPLE 6 Finding the Interval of Convergence

Jl
Find the interval of convergence of E ( 1 2hn+ Vi
n=0

Solution Letting u, = (—1)*(x + 1)"/2" produces

(_ 1)n+1(x + 1)n+1
. u”+1 . 2n+1
=1
i}i)ngo u, nLnolo (— []”(x + 1)"
on

. 2Mx £+ 1)
= nll)n‘olo i 2n+1 ‘
ek
)

By the Ratio Test, the series converges if |(x + 1 /2] < lor |x+ 1] < 2. So, the
radius of convergence is R = 2. Because the series is centered at x = —1, it will
converge in the interval (=3, 1). Furthermore, at the endpoints you have

1) 2\ % on 0
2 ( ) ( ) E Pl E 1 Diverges when x 3
n=0 2 n=0 2 =0
and
1 n o)
2 ( 2n 2 Diverges when x = 1

n=0

both of which diverge. So, the interval of convergence is (=3, 1), as shown in Figure
9.20.

EXAMPLE 7 Finding the Interval of Convergence

Find the interval of convergence of

2

ml*

Solution Letting u, = x"/n? produces

im [Pt = [P D2
n—oo | U, n—co x”/n2

= lim _BE = |x|

e | + 12,

So, the radius of convergence is R = 1. Because the series is centered at x = 0, it
converges in the interval (— 1, 1). When x = 1, you obtain the convergent p-series

1 1 1 1 1
’Zlﬁ—?+?+?+ﬁ+--m Converges when x = 1
When x = — 1, you obtain the convergent alternating series
1 1 1 1 1
E(_n_2)—:_ﬁ+?—¥+zi_'." Converges when x = —1

n=1

Therefore, the interval of convergence for the given series is [—1,1]. =
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The Granger Collection

JAMES GREGORY (1638-1675)

One of the earliest mathematicians to work
with power series was a Scotsman, James
Gregory. He developed a power series method
for interpolating table values—a method that
was later used by Brook Taylor in the develop-
ment of Taylor polynomials and Taylor series.

Differentiation and Integration of Power Series

Power series representation of functions has played an important role in the develop-
ment of calculus. In fact, much of Newton’s work with differentiation and integration
was done in the context of power series—especially his work with complicated
algebraic functions and transcendental functions. Euler, Lagrange, Leibniz, and the
Bernoullis all used power series extensively in caleulus.

Once you have defined a function with a power series, it is natural to wonder how
you can determine the characteristics of the function. Is it continuous? Differentiable?
Theorem 9.21, which is stated without proof, answers these questions.

THEOREM 9.21 Properties of Functions Defined by Power Series
If the function given by

@ =S a0~ o
n=0
=ay+ ax—c) tax~cP+ax—cP+-. -

has a radius of convergence of R > 0, then, on the interval (¢ — R, ¢ + R), fis
differentiable (and therefore continuous). Moreover, the derivative and anti-
derivative of f are as follows.

O

1. f(x) = E na,(x — cpr—!

n=|\

=a, +2ax—¢) +3a;(x — )2+ - - -

N [oe) [—\' e C)n+l
2L ff(x)dx =C+ ,Zoa”-——n =7
(x — ¢) x—¢)?
5 + a, 3 +

=C+ayx —¢) + q

The radius of convergence of the series obtained by differentiating or integrating
a power series is the same as that of the original power series. The interval of
I convergence, however, may differ as a result of the behavior at the endpoints,

Theorem 9.21 states that, in many ways, a function defined by a power series
behaves like a polynomial. It is continuous in its interval of convergence, and both its
derivative and its antiderivative can be determined by differentiating and integrating
each term of the given power series. For instance, the derivative of the power series

00-le
f(x)=’z,om
2 43 e
:1+x+3+§+5+
is
W=1+QZ+ L+ @~ +
PO+ @5+ O+ @D 4.
x2 X3 x4
—1+x+?+§?+m+
= flx).

Notice that f"(x) = f(x). Do you recognize this function?
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EXAMPLE 8 Intervals of Convergence for f(x), f'(x), and J f(x) dx

Consider the function given by

oyt 2 x3

X X
f(x)=2;=x+7+€+---.

Find the intervals of convergence for each of the following.
a. [ flx)dx b. f(x) c. fx)

Solution By Theorem 9.21, you have

= § o

il
—
+
=
+
=

N
+
=

W
&

X
=C+-—5+
€12

+ PR
2.3 3.4

By the Ratio Test, you can show that each series has a radius of convergence of R = 1.
Considering the interval (— 1, 1), you have the following.

a. For [ f(x) dx, the series
0 x" +1
;1 m Interval of convergence: [—1,1]

converges for x = *1, and its interval of convergence is [—1,1]. See Figure
9.21(a).
b. For f(x), the series

[ xn
2 — Interval of convergence: [—1,1)
n=1 n
converges for x = —1 and diverges for x = 1. So, its interval of convergence is
[—1, 1). See Figure 9.21(b).
¢. For f’(x), the series

(o]
2 e L Tnterval of convergence: (—1, 1)
=

diverges for x = +1, and its interval of convergence is (—1, 1). See Figure 9.21(c).

Interval: [-1, 1] Interval: (-1, 1) Interval: (-1, 1)
Radius: R=1 Radius: R=1 Radjus: R=1
1 et
-1 c=0 1 -1 c=0 1 -1 c=0 1
(a) (b) ©
Figure 921 EE—

From Example 8, it appears that of the three series, the one for the derivative,
f(x), is the least likely to converge at the endpoints. In fact, it can be shown that if the
series for f/(x) converges at the endpoints x = ¢ + R, the series for f(x) will also
converge there.
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1. io:nx" 2.
n=0
33 S ecer 4

n3

n=1

In Exercises 5-10, find the radius
series.

3

: ax
5 ) (—1yp—2— 6.
=0 { } n+ i

o [‘2‘.)”

7. El — 8.
{2x)2
n=10 {2”“

9.

10.

b8

In Exercises 1-4, state where the power series is centered.

of convergence of the power

[\
2

[
o

b8
T

3
I

=}
R

(N

I
<
=

In Exercises 11-34, find the interval of convergence of the
power series. (Be sure to include a check for convergence at the

endpoints of the interval,)

X n
<§) 12.

(_ 1)!! ¥

D8

11.

=
[=

Mg i

13. 14.
n=]| n
& X"
15. ,;O i 16.
o \ I)n
17. ,Z‘o (2n)! ( > 18.
(

_l)n+1xn

v § = 20,
n=] 4
© (_1)!1+1(x _ 5)11
21. .
! VZI ns" &
0 _(_ 1)n+l(x _ l)n+l
23. ”ZO T 24,
&y - 'J,Jra I
25, Z{ i 26.
r {; n — =1 b
27 P (—2x) 28
29 oo \'.!u #1
: ,,21] (2n + 1) 80
Q234 (n+ 1)y
31 ”Z] =
[e=] 2 . 4 . 6 CRCI: 2n
= ,,Z, [75_7 @+ 1)

(5
‘A

33. o

i

nllx + 1)

34. .5...(2,1_T)

I\
5

=
n

S

S =1+ 1)

n=0

SRC

n=0 (211)'

§ e
o n + 1)(n + 2)
& (=1 nl(x — 4

3!:
i o= g
o (n 4 1)40nd
$ (=1 — 2
n=1 n2"
=] (_ l)nx2n+]

EO 2n +1

o (_ l)n x2n
n!

B
I
=}

nlx"
(2n)!

[\

i

I

] x2n+l

ZD"I3 7 A1 (4 1) — 3

In Exercises 35 and 36, find the radius of convergence of the
power series, where ¢ > 0 and k is a positive integer.
o) (f’l')k X"

35. S Gzt 36. ’ZO &

In Exercises 37-40, find the interval of convergence of the
power series. (Be sure to include a check for convergence at the
endpoints of the interval.)

2 [x\n ) (_ 1)n+1(x A= ‘.]u
37. ”ZO ( k) . k>0 38. ,.21 =

[ee) “ I , + 2 . a-Ta . + p— n
39, E Kk + 1)(k ) (k +n - 1)x”

n!

k=1
n=1
nlx — o) -

AT e

In Exercises 41-44, write an equivalent series with the index of
summation beginning at n = 1,
NI

a. S 2. § (11 4+ e

!
n=0M: n=0

o) xen+l1 o {_l)nx2n+l
. ”20 (2n + 1) - &y 2n+1

In Exercises 4548, find the intervals of convergence of (a) f(x),
() fx), (¢) f"(x), and (d) Jf(x)dx. Include a check for
convergence at the endpoints of the interval,

2. fi) = § (g)

n=0
(__1):] (x 5):1

46. f) = 3 H L

n=|1
1y g

n+1

47. f(x) = 20
19 - § =2

n=|

Writing In Exercises 49-52, match the graph of the first 10
terms of the sequence of partial sums of the series

s =5 &)

with the indicated value of the function. [The graphs are labeled
(a), (b), (¢), and (d).] Explain how you made your choice.

(a) ‘:‘rr (b)

i
L]
L
L ]
[ ]
[
—_
(=R S 1

S
|
= n —-T— =

L e
2 4 6 8

N AN oo

"
L]
[ ]
L]
[ )
| —



© s, @ 5
2 1
- esocoooe £ L
i ° ; [ e Tetece
1
4
e e T A A A P
1 2 4 6 8 2 4 6 8
49. g(1) 50. g(2)
51. g(3.1) 52. g(—2)

Writing In Exercises 53-56, match the graph of the first 10
terms of the sequence of partial sums of the series

glx) = i 2y

with the indicated value of the function. [The graphs are labeled
(a), (b), (c), and (d).] Explain how you made your choice.

@ s, (b) S,
4-1— . 2.0
o ®
[ ]
3 it [ ] 1.5 i
L4 geo0000000
.
2+ o 1.0 4
| ® 0.5
A I o i
123456789 -11123456789
T
(c) S, @ s,
1.00 ¢ 18+ °
075l eteonecee 15+ .'
12+
0.50 0 .
0.25 (o . .
3 - L
e 1 i o T ) _
11123456789 o e o L K
. 123456789

Writing About Concepts

57. Define a power series centered at ¢.

58, Describe the radius of convergence of a power series.
Describe the interval of convergence of a power series.

59. Describe the three basic forms of the domain of a power
series.
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Writing About Concepts (continued)

60. Describe how to differentiate and integrate a power series
with a radius of convergence R. Will the seties resulting
from the operations of differentiation and integration have
a different radius of convergence? Explain.

61. Give examples that show that the convergence of a power
series at an endpoint of its interval of convergence may be
either conditional or absolute. Explain your reasoning.

62. Write a power series that has the indicated interval of
convergence. Explain your reasoning.

@ (-2,2) ® (L1 (© (-1,0) (@ [-2,6)
63. Let f(x) = 20 ’J(EZL)I:CT;I and glx) = 20 ———(_(2:);62"

(a) Find the intervals of convergence of f and g.
(b) Show that f(x) = g(x).

(c) Show that g(x) = —f(x).

(d) Identify the functions f and g.

64 Let f0) = S =
n=0""*

(a) Find the interval of convergence of f.
(b) Show that f/(x) = f(x).

(c) Show that £(0) = 1.

(d) Identify the function I

In Exercises 65-70, show that the function represented by the
power series is a solution of the differential equation.

[ (_ 1)11 x2n+]

65.y=,§0———(2n+1}!. y'+y=0

=) (__ 1)!1 x2n
! — Ty =

66.y u}::o (2n)! Y =%
© x2n+l "

67.y= 2 Gn+ ) 7 —y=0

8 o0 x2n ” 0

68 3= 2 Gay V70T

9 o) x2n ” , 0

9. 3= 3 qoap VTR 7Y

© (_1]!1 x4n

Ly=1+ " oxly =
0.y=1+3 a3 710 @1 )

n=1
71. Bessel Function The Bessel function of order 0is
o (_ 1)k x2k
Jox) = T AT
0( ) kzo 2k (k!)z
(a) Show that the series converges for all x.
(b) Show that the series is a solution of the differential equation
x2J," + xJy' + x2Jy = 0.
PF" (c) Use a graphing utility to graph the polynomial composed of
the first four terms of Jp.

(d) Approximate f(; J, dx accurate to two decimal places.
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72. Bessel Function The Bessel function of order 1 is

o (= 1)k x2
Jx) = SN T
@) ";0 2% ki + 1)1

(a) Show that the series converges for all x.

(b) Show that the series is a solution of the differential equation
I+ xR = 1), =0,

{¢) Use a graphing utility 1o graph the polynomial composed of
the first four terms of gy

(d) Show that J,(x) = —J,(x).

rﬂfc‘ In Exercises 73-76, the series represents a well-known function.
Use a computer algebra system to graph the partial sum S0 and
identify the function from the graph.,

B0=5 e - §
) n=0 (2}1)' ) n=0 (271 + 1)'
75 /0 =S~ 1 <x<t
_ ”o:)o x2n+1
76. f(x) = ZO (= 1)”m, —1<x<1

H"’ 77. Investigation In Exercise 11 you found that the interval of
convergence of the geometric series 2 (%) is (—2,2).
n=0
(a) Find the sum of the series when x = 43. Use a graphing
utility to graph the first six terms of the sequence of partial
sums and the horizontal line representing the sum of the
series.

(b) Repeat patt (a) for x = —%.

(c) Write a short paragraph comparing the rate of convergence
of the partial sums with the sum of the series in parts (a)
and (b). How do the plots of the partial sums differ as they
converge toward the sum of the series?

(d) Given any positive real number M, there exists a positive
integer N such that the partial sum

N 3\
IZ 0 <§) -

Use a graphing utility to complete the table.
M I 10 [ 100 1000 —|T0,000

v

fﬂF 78. Igzovestigation The interval of convergence of the series
> Goris (=34, 4).
n=0
(a) Find the sum of the series when x = é. Use a graphing utilj-
ty to graph the first six terms of the sequence of partial sums
and the horizontal line representing the sum of the series.

(b) Repeat part (a) for x = —%.

(c) Write a short paragraph comparing the rate of convergence
of the partial sums with the sum of the series in parts (a)
and (b). How do the plots of the partial sums differ as they
converge toward the sum of the series?

(d) Given any positive real number M, there exists a positive
integer N such that the partial sum

N 2\
2 (3 . g) > M.
n=0

Use a graphing utility to complete the table.

1000 [ 10,000

True or False? In Exercises 79-82, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

M{ 10 100
Nl

o0
79. If the power series E a, x" converges for x = 2, then it also
n=0

converges for x = —2.

o0
80. If the power series 2 a, x" converges for x = 2, then it also
n=0

converges for x = —1,

81. If the interval of convergence for E a, x"is (—1, 1), then the
n=0

jee]
interval of convergence for E a, (x — 1)"is (0, 2).
n=0

82. If f(x) = 3 a,x" converges for |x| < 2, then
n=0

| = a”
fof(x)dx: 20T

n=0

83. Prove that the power series

& (n+ p) B
“hntn + g)!

n

has a radius of convergence of R = oo if p and g are positive
integers.

84 Tetglx) = 1+ 2x + 2+ 23 + 4 + . - , Where the coef-
ficients are ¢, = land ¢,,,, = 2 forn > 0.
(a) Find the interval of convergence of the series.

(b) Find an explicit formula for g(x).

85. Let f(x) = ¥ c,x", wherec, , , = ¢, forn 2 0.
n=0

(a) Find the interval of convergence of the series.

(b) Find an explicit formula for f(x).

o
86. Prove that if the power series E ¢,x" has a radius of conver-
n=0

OO
gence of R, then E ¢, %" has a radius of convergence of /R.
n=0

87. Forn > 0,1et R > 0 and ¢, > 0. Prove that if the interval of

o0

convergence of the series 2 e, = xo)"is (x, — R, x, + R,
n=0

then the series converges conditionally at x, + R.
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tion 9. Representation of Functions by Power Series

e Find a geometric power series that represents a function.
e Construct a power series using series operations.

Geometric Power Series

In this section and the next, you will study several techniques for finding a power
series that represents a given function.
Consider the function given by f(x) = 1/(1 — x). The form of f closely resem-

5 bles the sum of a geometric series

3

= oo a

8 > oart =10 |r| < L.

g;n n=0 1L—r

o

S In other words, if youleta = 1 and r = X, a power series representation for 1/(1 — x),
£ centered at 0, is

JosepH FOURIER (1768-1830) 1 o
= n

Some of the early work in representing func- 1 —x ”240 *
tions by power series was done by the French _ 2 3
mathematician Joseph Fourier. Fourier’s work =l+x+x+x+ ’ lxl <L
is important in the history of calculus, partly Of course, this series represents f(x) = 1/ (1 — x) only on the interval (—1,1),
because it forced eighteenth century mathe- whereas f is defined for all x # 1, as shown in Figure 9.22. To represent f in another

maticians to question the then-prevailing interval, you must develop a different series. For instance, (o obtain the power series
narrow concept of a function. Both Cauchy

i . . centered at — 1, you could write
and Dirichlet were motivated by Fourier's y

work with series, and in 1837 Dirichlet 1 1 1/2 a

published the general definition of a function T —x 2-G+1) 1-1 [+ 1)/2] 1 —r
that is used today.

which implies that a = Land r = (x + 1)/2. So, for |x + 1] < 2, you have
1

Siswl
1—x =2\ 2

2 + 3
=—[1+(5—;—11+(x—+41—)+9—8~1)—+~-], Ix + 1] <2

R s

which converges on the interval (—3, 1),

¥y
2 I :
o/l..
| b x AN I I
2 3 -1 o2 3
-1 4 ! -1 :
-2 ; -2 H
F) = 1—17 . Domain: all x # 1 f@) =3 x", Domain: ~1 <x<1
= n=0

Figure 9.22



670 CHAPTER 9 Infinite Series

EXAMPLE |  Finding a Geometric Power Series Centered at 0
EE——

Find a power series for f(x) = , centered at 0.

x+2

Solution Writing £(x) in the form a/(1 — r) produces

4 2 __a
2+x 1—-(—x/2) 1-¢
which implies that ¢ = 2 and r = —x/2. So, the power series for f(x) is
4 O
x+2 ,;0 ud
(0] x n
549
nZO 2
x | x2 X3
- 2(1 - ) + Z 3 + )

Long Division

2— x4+l Ipqg. .. This power series converges when
2+x)4 X
= <1
4+ 2x 2
—2x Ce : .
e R which implies that the interval of convergence is (—2, 2). ———
T 2
&

Another way to determine a power series for a rational function such as the one
in Example 1 is to use long division. For instance, by dividing 2 + xinto 4, you obtain
Iyt the result shown at the left.

EXAMPLE 2 Finding a Geometric Power Series Centered at |
T
Find a power series for flx) = i, centered at 1.

Solution  Writing f(x) in the form a/(1 — r) produces

| | a

x 1= (—.r+_i) | =

which implies thata = landr = 1 — x = —(x — 1). So, the power series for f(x)is

e
I
[\t
Q
\z

=
I
=)

[~ = D]

Il
[\t

0

n

S (1= 1

n=0

=1 ==+ =12 (—1P+- ...

8

This power series converges when
x—1] <1

which implies that the interval of convergence is (0, 2). ——
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Operations with Power Series

The versatility of geometric power series will be shown later in this section, following
a discussion of power series operations. These operations, used with differentiation
and integration, provide a means of developing power series for a variety of
elementary functions. (For simplicity, the following properties are stated for a series
centered at 0.)

‘ Operations with Power Series ‘
‘ Let f(x) = = a,x" and g(x) = 2 b,x". ‘

‘ L flkx) = ) ak"x" ‘

n=0

‘ 2. f(xV) = i a,x™v ‘
#=0

‘ 3. flx) + glv) = i (a, £ b,)x" ‘
|_ - n=0 = J

The operations described above can change the interval of convergence for the
resulting series. For example, in the following addition, the interval of convergence for
the sum is the intersection of the intervals of convergence of the two original series.

(1D 022 = (LD

EXAMPLE 3 Adding Two Power Series

3x—1
x2 -1

Find a power series, centered at 0, for f (x) =

Solution  Using partial fractions, you can write f (x) as

3x — 1 2 1
xz—l_x+1+x—l'

By adding the two geometric power series

2 2 =
x+1—1_(_x)-—"202(—1)x, x| <1
and
1 —1 e
pes it e LA

you obtain the following power series.

x2_1=E[2(—1)”—1]x”=1—3x+x2—3x3+x4—---
n=0

The interval of convergence for this power series is (—1,1). —
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EXAMPLE 4 Finding a Power Series by Integration
L ]
Find a power series for f(x) = In x, centered at 1.
Solution  From Example 2, you know that
1 o)
; . E (- l)n(x = 1) Interval of convergence: (0, 2)
n=0
Integrating this series produces

Inx=fldx+C
X

[or) x—1 n+1
=C+ E (—1)”%.
n=0

By letting x = 1, you can conclude that C = (. Therefore,
(x — L)rt!
n 1

_(.r—l}_(-LTl_J')'_l_(A'_”j {,r—'l)‘f_l_‘__ .

Inx = S (=1}~

m=I)

] 2 3 <4

Note that the series converges at x = 2. This is consistent with the observation in the
preceding section that integration of a power series may alter the convergence at the
endpoints of the interval of convergence. —

TECHNOLOGY In Section 9.7, the fourth-degree Taylor polynomial for the
natural logarithmic function

=12 =1P (- 1)

Inx =~ (x — 1)—T+T—T
was used to approximate In(1.1). B
-~ —Lonzs Lo - Lige
In(1.1) = (0.1) 2(0.1) +3 (0.1) 4(0.1)
= 0.0953083

You now know from Example 4 that this polynomial represents the first four terms
of the power series for In x. Moreover, using the Alternating Series Remainder, you
can determine that the error in this approximation is less than

IRy] < Jas]
1 5
= 5(0.1)

= 0.000002.

During the seventeenth and eighteenth centuries, mathematical tables for logarithms
and values of other transcendental functions were computed in this manner. Such
numerical techniques are far from outdated, because it is precisely by such means
that many modern calculating devices are programmed to evaluate transcendental
functions.
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SRINIVASA RamanuJAN (1887-1920)

Series that can be used to approximate 7 have
interested mathematicians for the past 300
years. An amazing series for approximating
1/ 7r was discovered by the Indian mathe-
matician Srinivasa Ramanujan in 1914 (see
Exercise 64). Each successive term of
Ramanujan’s series adds roughly eight more
correct digits to the value of 1/ 7. For more
information about Ramanujan’s work, see the
article“Ramanujan and Pi”by Jonathan M.
Borwein and Peter B. Borwein in Scientific
American.

SECTION 9.9 Representation of Functions by Power Series 673
EXAMPLE 5 Finding a Power Series by Integration
Find a power series for g(x) = arctan x, centered at 0.
Solution Because D, [arctan x] = 1/(1 4+ x?), you can use the series
1 [ele}
fx) = m = ”20 (—1)rxn, Interval of convergence: (— 1. 1)
Substituting x? for x produces
f(x;’) = T a2 = 2 (_ 1)")62”.
A n=0
Finally, by integrating, you obtain
= +
arctan x j Top2 dx + C
o0 x2n+ |
=Cc+ > (-1
”20( ) 2n + 1
o) x2n +1
= 2 (—1y Let x = 0, then C = 0.
o 2n + 1
Fe o e B
=x— ? + ? - 7 oo, Interval of convergence: (—1,1)
—

It can be shown that the power series developed for arctan x in Example 5 also
converges (to arctan x) for x = 1. For instance, when x = 1, you can write

arctan1=1—l+l—l+- e
35 7
— L
=7

However, this series (developed by James Gregory in 1671) does not give us a practi-
cal way of approximating 7 because it converges 5o slowly that hundreds of terms
would have to be used to obtain reasonable accuracy. Example 6 shows how to use two
different arctangent series to obtain a very good approximation of r using only a few
terms. This approximation was developed by John Machin in 1706.

EXAMPLE 6 Approximating 7 with a Series

Use the trigonometric identity

w

1 1
4 arctan — — arctan o = 1

5 239

to approximate the number 7 [see Exercise 50(b)].

Solution By using only five terms from each of the series for arctan(1/5) and
arctan(1,/239), you obtain
1 1
4(4 arctan 5~ arctan 239> =~ 3.1415926

which agrees with the exact value of 7 with an error of less than 0.0000001.



674 CHAPTER 9 Infinite Series

Exercises for Section 9.9

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, find a geometric power series for the function, H“' Graphical and Numerical Analysis In Exercises 27 and 28, let

centered at 0, (a) by the technique shown in Examples 1 and 2
and (b) by long division.

4
5—x

1. fla)im=m= 2. f(x) =

2—x
1
2+ x

3. flx) = 4. f(x) =

1+=x

In Exercises 5-16, find a power series for the function, centered
at ¢, and determine the interval of convergence.

1 4

5.f(x)=2_x, c=5 6.f(x)=5_x, él= 52
3 _ 3 _
7.f(x)—ﬁ, c=0 8.f(x)——2x_1, c=2
9. glx) = ! c=-3 10, hlx) = ! c=0
2x — 5 2x =5
L f)=—— c=0 12 f() =2 2
B ag ¢ I Ty 7
3x
13. g(x)—m, c=0
4x — 7
WeW=gaim—p =0
2
15. f(x)=1_—x2, c=0
4
16. f(x)=4—+x—2, c=90

In Exercises 17-26, use the power series

1+x"

== 5 (1
n=0

to determine a power series, centered at 0, for the function.
Identify the interval of convergence.

-2 1
17°h(x)_x2—1_1+x+1—x
X 1 1
18'h(x)_x2—1—2(1+x)_2(1—x)
1 d 1
= f(x)_—(x+1)2_a[x+1:,

20. f(x) = e f NEh ;x—z[ﬁJ

21 fx) =Inx + 1) = fﬁdx

2, f(x)=ln(1—x2)=f1j_xdx—flixdx

23, glx) =

24. f(x) = In(x2 + 1)

25. h{x) 26. f(x) = arctan 2x

2 3 4 n
X X X X
=x -S4+ -+

S 273 4 '

Use a graphing utility to confirm the inequality graphically.
Then complete the table to confirm the inequality numerically.

x 0002|0406 08] 10

S

In(x + 1)

Sn+1

IA

27. S, <In(x+ 1) <8,
28, 8§, < In(x + 1) < S5

In Exercises 29 and 30, (a) graph several partial sums of the
series, (b) find the sum of the series and its radius of conver-
gence, (c) use 50 terms of the series to approximate the sum
when x = 0.5, and (d) determine what the approximation
represents and how good the approximation is.

o (—1)r+1 — n
29, 2 ( 1) (x 1)

n=1
o) (;1)nx2n+l
& 2n + 1)

n

30.

In Exercises 31-34, match the polynomial approximation of the
function f(x) = arctan x with the correct graph. [The graphs
are labeled (a), (b), (c), and (d).]

(a) ¥ (b)

(©) (d)

3. glx) =x 32, glx) =x — %
32X 2 ox X
33.g(x)—x—3-|-5 34.g(x)—x—3 s~ 7
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In Exercises 35-38, use the series for f(x) = arctan x to approx-
imate the value, using R, < 0.001.

1
35. arctan 1

1/2 2
arctan
3. f AL iy
0 P

/4
36. j arctan x dx
[}]

1/2
38. J x2 arctan x dx
0

In Exercises 39-42, use the power series

x] < 1.

n=0

Find the series representation of the function and determine its
interval of convergence.

1

f&) = T 40. f(x) = T fx)2
a1, f() = (—1% 2. f(x) = )(‘—51%;)‘—2

43. Probability A fair coin is tossed repeatedly. The probablhty
that the first head occurs on the nth toss is P(r) = ( ) When
this game is repeated many times, the average number of tosses
required until the first head occurs is

E(n) = i nP(n).

(This value is called the expected value of n.) Use the results of
Exercises 39—42 to find E(n). Is the answer what you expected?
Why or why not?

44. Use the results of Exercises 39—42 to find the sum of each series.
1 [o') 2 n 1 o) 9 n
_ iy b = i
(a) 31121 n<3> ( ) 10”:1 n<10>

Writing In Exercises 45-48, explain how to use the geometric
series

gx) =

2 jx| <1
to find the series for the function. Do not find the series.

1 1
1+x 46. f&) = 1 —x2
5

48. f(x) = In(1 — x)

45. f(x) =

47. fl T1+x

x +
49, Prove that arctan x + arctany = arctan 1

provided the value of the left side of the equation is between
— /2 and 7/2.

50. Use the result of Exercise 49 to verify each identity.

Yy
for xy # 1
v y

(@) arctan 122 — arctan = = =
a) arctan o arctan o0 =

1 1w
(b) 4 arctan 5 — arctan 730 4

[Hint: Use Exercise 49 twice to find 4 arctan %

(2).]

Then use part
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In Exercises 51 and 52, (a) verify the given equation and (b) use
the equation and the series for the arctangent to approximate 7
to two-decimal-place accuracy.

1 1 T
51. 2 arctan 2 arctan 774

1 1 T
52. arctan 5 + arctan 372

In Exercises 53—58, find the sum of the convergent series by
using a well-known function. Identify the function and explain
how you obtained the sum.

N n+1 n+l_.
53, ”21( 1) 2” 54, "2]( 1) T
s5. S (-l 56. S (15
5"n 2n+1

n=1 n=0

1

=) 1
P I e n+t -~
5. 2 Vg OF 3 0 G

n=1

Writing About Concepts

59. Use the results of Exercises 31-34 to make a geometric argu-
ment for why the series approximations of f(x) = arctan x
have only odd powers of x.

60. Use the results of Exercises 31-34 to make a conjecture about
the degrees of series approximations of f(x) = arctan x that
have relative extrema.

61. One of the series in Exercises 53-58 converges to its sum at

pﬁ?, a much lower rate than the other five series. Which is it?
Explain why this series converges so slowly. Use a graphing
utility to illustrate the rate of convergence.

62. The radius of convergence of the power series 2 a,x"

n=0
is 3. What is the radius of convergence of the series

Y. na,x"~'? Explain.

n=1

OO
63. The power series 2 a,x" converges for lx+ 1] < 4

n=0
xn+1

What can you conclude about the series a, i
y IIE [4] n+ 1

Explain.

F‘F’ 64. Use a graphing utility to show that

/8 & (4n)'(1103 + 26,390n) _ 1
9801 &, (n1)396* T

(Note: This series was discovered by the Indian mathematician
Srinivasa Ramanujan in 1914.)

In Exercises 65 and 66, find the sum of the series.

(_ 1) ,n.2n+l

. ] ]H
£ 2 o 3212 + 1))

2‘ 2n+ 1)
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| Taylor and Maclaurin Series

Bettmann/Corbis

CoLIN MACLAURIN (1698—1746)

The development of power series to represent
functions is credited to the combined work of
many seventeenth and eighteenth century
mathematicians. Gregory, Newton, John and
James Bernoulli, Leibniz, Euler, Lagrange,
Wallis, and Fourier all contributed to this
work. However, the two names that are most
commonly associated with power series are
Brook Taylor (1685-1731) and Colin
Maclaurin.

NOTE Be sure you understand Theorem
9.22. The theorem says that if a power
series converges to f(x), the series must
be a Taylor series. The theorem does nor
say that every series formed with the
Taylor coefficients a, = f®(c)/n! will
converge to f(x).

* Find a Taylor or Maclaurin series for a function.
¢ Find a binomial series.
* Use a basic list of Taylor series to find other Taylor series.

Taylor Series and Maclaurin Series

In Section 9.9, you derived power series for several functions using geometric series
with term-by-term differentiation or integration. In this section you will study a
general procedure for deriving the power series for a function that has derivatives of
all orders. The following theorem gives the form that every convergent power series
must take.

THEOREM 9.22 The Form of a Convergent Power Series

If f is represented by a power series f(x) = 2 a,(x — )" for all x in an open
interval I containing c, then a, = f®(c)/n! and

7 (n)
56 =10 + £ = )+ LD —epv - LD ey
! ! |
Proof Suppose the power series 3 a,(x — ¢)" has a radius of convergence R. Then,

by Theorem 9.21, you know that the nth derivative of f exists for [x — ¢| < R, and
by successive differentiation you obtain the following.
FOK) = ay + a,(x — ¢) + ay(x — ¢)2 + as(x —cP +alx— o)+ - -
FO%) = a; + 2a,(x — ) + 3ay(x — ¢)2 + da,x —cP + - - -
fOP() =2a, + 3lay(x ~ ) + 4 - 3a,(x — )2 + - - -
SOk) = 3lay, + da,(x —¢) + - - -
SO =nla, + (n + Dla,, (x —c) + - - -
Evaluating each of these derivatives at x = ¢ yields
fO(c) = 0la,
fOc) = 1laq,
fP(c) = 2!a,
Fc) = 3la,

and, in general, f*)(c) = nla,. By solving for a,, you find that the coefficients of the
power series representation of f(x) are

_ 1)

n n! -’ S —

Notice that the coefficients of the power series in Theorem 9.22 are precisely the
coefficients of the Taylor polynomials for f(x) at ¢ as defined in Section 9.7. For this
reason, the series is called the Taylor series for Sfx) atc.
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Definitions of Taylor and Maclaurin Series

If a function f has derivatives of all orders at x = ¢, then the series

R R LR E s

is called the Taylor series for f(x) at c. Moreover, if ¢ = 0, then the series is
| the Maclaurin series for f.

If you know the pattern for the coefficients of the Taylor polynomials for a
function, you can extend the pattern easily to form the cor responding Taylor series.
For instance, in Example 4 in Section 9.7, you found the fourth Taylor polynomial for
In x, centered at 1, to be

1 1 1
el — 1) = 2 — 12+ =(x— 1) — —(x — 11
P,(x)=@x—1) 2()c 1) 3(x 1) 4(x 4
From this pattern, you can obtain the Taylor series for ln x centered at ¢ = 1,

(x—l)—%(x—1)2+- : -H—‘%i(x—l)u- o

EXAMPLE | Forming a Power Series

Use the function f(x) = sin x to form the Maclaurin series

$ 190 1 _ o) + pioge + £ 2 1 20 10O

2l 2 3! 41

x4+ e
and determine the interval of convergence.

Solution  Successive differentiation of f(x) yields

flx) = sinx f0)y =sin0 =0

f/x) = cos x F(0) =cos0 =1

f(x) = —sinx f7(0) = —sin0 =0
fO(x) = —cosx FO0) = —cos 0 = —1
f@(x) = sinx F@(0) =sin0 =0
FO(x) = cos x fO(0) = cos 0 =1

and so on. The pattern repeats after the third derivative. So, the power series is as
follows.

$ L0 = 110) + 710 + L0 41 00,5 L 00,
n=0 :
= l)n 2n+1 0 ( ) 1 0
nZO 2n + 1)! —0+(1)x+2—!x2+ 3! 3+Z|._|x4+5 5+—6—‘x6
( 1)x7 + -

By the Ratio Test, you can conclude that this series converges for all x. —
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Jix)y=

Nig—
LSl

-1

Figure 9.23

Notice that in Example 1 you cannot conclude that the power series converges to
sinx for all x. You can simply conclude that the power series converges to some
function, but you are not sure what function it is. This is a subtle, but important, point
in dealing with Taylor or Maclaurin series. To persuade yourself that the series

f(c)+f’(c)(x—c)+%(!c)(x—c)2+-"+%(x—c)”+- .

might converge to a function other than f, remember that the derivatives are being
evaluated at a single point. It can easily happen that another function will agree with
the values of fU(x) when x = ¢ and disagree at other x-values. For instance, if you
formed the power series (centered at 0) for the function shown in Figure 9.23, you
would obtain the same series as in Example 1. You know that the series converges for
all x, and yet it obviously cannot converge to both f(x) and sin x for all x.

Let f have derivatives of all orders in an open interval I centered at ¢. The Taylor
series for f may fail to converge for some x in 7. Or, even if it is convergent, it may
fail to have f(x) as its sum. Nevertheless, Theorem 9.19 tells us that for each n,

n
,C)(x—c)2+- - ~+f()'(c)

16 =70 + fQ)e - o) + L2 T~ oy + R ()

where

f(n + 1)(Z)
R [ AN — n+ l_
® =t 56—
Note that in this remainder formula the particular value of z that makes the
remainder formula true depends on the values of x and n. If R, — 0, then the following

theorem tells us that the Taylor series for f actually converges to f(x) for all xin J.

i
THEOREM 9.23 Convergence of Taylor Series ‘

If lim R, = O for all x in the interval /, then the Taylor series for f converges

ang equals f(x),
co £(1)
@ = $EE oy
n=0 .

Proof  For a Taylor series, the nth partial sum coincides with the nth Taylor polyno-
mial. That is, S,(x) = P,(x). Moreover, because

P,(x) = f(x) — R,(x)
it follows that

lim S,(x) = lim P,(x)

n—oo n—oo

= lim [0) = R,(2)]
= ) = Jim R,(x)

So, for a given x, the Taylor series (the sequence of partial sums) converges to f(x)

if and only if R,(x) - 0 as n— co. —

NOTE Stated another way, Theorem 9.23 says that a power series formed with Taylor
coefficients a, = f®)(c)/n! converges to the function from which it was derived at precisely
those values for which the remainder approaches 0 as 7 — co.



SECTION 9.10 Taylor and Maclaurin Series 679

In Example 1, you derived the power series from the sine function and you also
concluded that the series converges to some function on the entire real line. In
Example 2, you will see that the series actually converges to sin x. The key observa-
tion is that although the value of z is not known, it is possible to obtain an upper
bound for | D(z)].

EXAMPLE 2 A Convergent Maclaurin Series

Show that the Maclaurin series for f(x) = sin x converges to sin x for all x.

Solution Using the result in Example 1, you need to show that

)C3 xS x7 (_ 1)!1 x2n+ 1
k- I e
31750 7 (n + 1)!

sinx = x
is true for all x. Because

Fo+r(x) = +sinx
or

Fo+D(x) = +cos x

you know that |f#+1(z)| < 1 for every real number z. Therefore, for any fixed x, you
can apply Taylor’s Theorem (Theorem 9.19) to conclude that

f(nJrl)(Z) . lx|n+1
X

T+ Y

0= |Rn(x)| = (I’L + 1)|

From the discussion in Section 9.1 regarding the relative rates of convergence of
exponential and factorial sequences, it follows that for a fixed x

n+1
tim

n—oo (I’l + I)T - 0

Finally, by the Squeeze Theorem, it follows that for all x, Rn(x) — 0 as n— o0. So, by
Theorem 9.23, the Maclaurin series for sin x converges to sin x for all x.

Figure 9.24 visually illustrates the convergence of the Maclaurin series for sin x
by comparing the graphs of the Maclaurin polynomials P,(x), Py(x), P5(x), and P,(x)
with the graph of the sine function. Notice that as the degree of the polynomial
increases, its graph more closely resembles that of the sine function.

-2
-3 -
—4

3
Px)=x P3(x)=x—%i Ps(x) =x—37+%;

As n increases, the graph of P, more closely resembles the sine function.
Figure 9.24
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The guidelines for finding a Taylor series for f(x) at ¢ are summarized below.

Guidelines for Finding a Taylor Series

1. Differentiate f(x) several times and evaluate each derivative at c.

f(C),f/(C),f”(C),f”’(C), | Nk A ’f(") (C), "B

Try to recognize a pattern in these numbers.

2. Use the sequence developed in the first step to form the Taylor coefficients
a, = f(c)/n!, and determine the interval of convergence for the resulting
power series

4 (n)
f(c)+f’(c)(x—c)+f2—('c)(x—c)2+- . -+fn—'(c)(x—c)”+- .-
3. Within this interval of convergence, determine whether or not the series

converges to f(x).

The direct determination of Taylor or Maclaurin coefficients using successive
differentiation can be difficult, and the nex! exa mple illustrates a shortcut for finding
the coefficients indirectly—using the coefficients of a known Taylor or Maclaurin
series.

EXAMPLE 3 Maclaurin Series for a Composite Function

Find the Maclaurin series for f(x) = sin x2.

Solution To find the coefficients for this Maclaurin series directly, you must
calculate successive derivatives of f(x) = sin x2. By calculating just the first two,

fx) = 2xcos x2 and f(x) = —4x2sinx2 + 2 cos x2

you can see that this task would be quite cumbersome. Fortunately, there is an
alternative. First consider the Maclaurin series for sin x found in Example 1.

glx) = sinx
RV S S
BT TR T
Now, because sin x? = g(x2), you can substitute x? for x in the series for sin x to
obtain
sin x2 = g(x2)
x6 10 414

- eos - == W oa F
IR TR TH TR

Be sure to understand the point illustrated in Example 3. Because direct
computation of Taylor or Maclaurin coefficients can be tedious, the most practical
way to find a Taylor or Maclaurin series is to develop power series for a basic list of
elementary functions. From this list, you can determine power series for other
functions by the operations of addition, subtraction, multiplication, division, differen-
tiation, integration, or composition with known power series.



il

1z

fo)= VT+x

Figure 9.25

1
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Binomial Series

Before presenting the basic list for elementary functions, you wll develop one more
series—for a function of the form f(x) = (1 + x)*. This produces the binomial series.

EXAMPLE 4 Binomial Series

Find the Maclaurin series for f(x) = (1 + x)* and determine its radius of convergence.
Assume that £ is not a positive integer.

Solution By successive differentiation, you have

f) = (1 + x)* fO) =1
) = k(1 + x)f! £(0) = k
) = Kk — (L + x)f2 f10) = k(k — 1)
fx) = kk — Dk = 2)(1 + x)¢? f70) = klk — 1)(k — 2)
F(x) - ke - (k—n+ D)1 +x}" ) _ kk—1) - -(k—n+1)

which produces the series

— 2 — — "
k(kzl)x+‘_‘+k(k 1) ('k nt x
n.

1+ kx +

Because a,,,/a,— 1, you can apply the Ratio Test to conclude that the radius of
convergence is R = 1. So, the series converges to some function in the interval

(_1, 1) ———

Note that Example 4 shows that the Taylor series for (1 + x)* converges to some
function in the interval {(—1, 1). However, the example does not show that the series
actually converges to (1 + x)* To do this, you could show that the remainder R, (x)
converges to 0, as illustrated in Example 2.

EXAMPLE 5 Finding a Binomial Series
————
Find the power series for f(x) = ¥/1 + x.

Solution  Using the binomial series

Kk = Dx? | ke = Dk =202

(I+xk=1+hke+

2! 3!
letk = % and write
2% 2+5x3 2-5-8*
LB = 422 -
L+ P =143 =3+ 353 3441
which converges for —1 < x < 1. e

TECHNOLOGY Use a graphing utility to confirm the result in Example 5.
When you graph the functions
x  x* 58 10x*

= 1/3 = i sl
Ffx) =1+ x) and P,x) =1+ 35 + 5 13

in the same viewing window, you should obtain the result shown in Figure 9.25.
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Deriving Taylor Series from a Basic List

The following list provides the power series for several elementary functions with the
corresponding intervals of convergence.

Power Series for Elementary Functions

Function
il I GRS ) rug )/ ) Y S Y
lile—x+x2—x3+x4_x5+...+(_1)nxn+...
lnxz(x_l)_(x—zl):’_+(xgl)3_(x—41)4+'..+(—1)'"‘YIM+_“
e"=1+x+’2‘—j+;—3!+2—‘;+§+---+%+-~
sinx=x—;c—j+;—5!—)7€—7!+§— {'———(_211):_)621";]
cosx=1—;—?+2—?—2—?+;—j_...+%+...
arctanx=x—%3+%5—x77 593— .- %4_
arcsinx = x + 2)6.33 + 21.'43T55 + 21°'43'.65f77 2 4 +(2"(’12:;2E% L o i

k —
I+xf=1+ke+ T 3l

Kk = Dx? k= 1)k = 202 | kk = D(k — 2)(k — 3)x* g

4!

Interval of
Convergence
O0<x<?2
—l<x<l1
O0<x<2

—00 < x < 00

—o0 < X < 00

—oo <X < 00

|
—_
A
=
IA
=

* The convergence at x = *1 depends on the value of k.

NOTE The binomial series is valid for noninteger values of k. Moreover, if k happens to be a
positive integer, the binomial series reduces to a simple binomial expansion.

EXAMPLE 6 Deriving a Power Series from a Basic List

Find the power series for f(x) = cos-/x.

Solution  Using the power series

x2  x

x6 Xt

cosx=1—--+-"-—"=+—=—"."

21 41

6! 8!

you can replace x by /x to obtain the series

X

x2

x» xt

cosvx=1—-——+——-—+

2!

6! ' 8l

This series converges for all x in the domain of cos/x—that is, forx = 0.
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Power series can be multiplied and divided like polynomials. After finding the
first few terms of the product (or quotient), you may be able to recognize a pattern.

EXAMPLE 7 Multiplication and Division of Power Series

Find the first three nonzero terms in each of the Maclaurin series.

a. e*arctan x b. tan x

Solution

a. Using the Maclaurin series for ¢* and arctan x in the table, you have
2

X X x3 x? PV R
earctanx—<1+1—!+a+§+:ﬂ+-..><x—?+?_...)_

Multiply these expressions and collect like terms as you would for multiplying
polynomials.

1+x+3x2+ g8+t +-

1 1
x - 3% K s
24 1.3 14, 1.5
x+ x*+3x0 + gx* g’
1 1 1
—§x3— gx“— gxs-;...
15
+ s+ ...

24,13 1.4 3
x+ X%+ gx Gl T o B A E
1
So, e*arctanx = x + x2 + x> + - - -
6

b. Using the Maclaurin series for sin x and cos x in the table, you have

3 5
x x
_+__
sin x 3t 5!
tanx = = = 4
cos x 1 — LR .
2! 41

| x + §x3 + —l%x5 + o
1—%x2+%x4— -)x—%)@-‘rl;—oxs—
X — %x3 + %Jﬁ .
%x3 - 31—0x5 +
%xf’ - éxs +
llsx5 +

1 2
So,tanx=x+§x3+gx5+---. ——
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EXAMPLE 8 A Power Series for sin2 x
T ————
Find the power series for f(x) = sin? x.

Solution  Consider rewriting sin? x as follows.

1 —cos2x 1 cos2x
2 2 2

sin2 x =

Now, use the series for cos x.

x2 x4 x6 x8
COSx—1—2—!+4—!—a+§—

22 24 28 28

cos 2x = 1 —2—!x2+ax4—ax6+§x8—- -
—%cost= —%+%x2—i—?x4+z—?x6—§—;x8+- .
sm2x=%——0052x=%—%+%x2—i—?x4+2—7x6—;—:x8+
= %xz - i—jx“ z—jx6 - 8_sz +
This series converges for —co < x < oo. —_—

As mentioned in the preceding section, power series can be used to obtain tables
of values of transcendental functions. They are also useful for estimating the values of
definite integrals for which antiderivatives cannot be found. The next example demon-
strates this use.

@D EXAMPLE 9 Power Series Approximation of a Definite Integral
S amee—m—

Use a power series to approximate

1
f e~ dx
0

with an error of less than 0.01.

Solution  Replacing x with —x2 in the series for e* produces the following,.

4 6 8
X2 _q_ 2y X X X
R L TR TRY
1 3 5 7 9 1
2 X P X X
—x — =N s . + _ ..
L‘" e [x 3 75.20 7-31" 9.4l ]o

1 1 1 1

:1—— bl a—

3 10 42 216

Summing the first four terms, you have
I
f e dx ~ 0.74
0

which, by the Alternating Series Test, has an error of less than ﬁ =~ (.005.
|
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 1-10, use the definition to find the Taylor series
(centered at c) for the function.

1. f(x) =e* c¢c=0
2. flx) =¢*, ¢=0

3. flx) =cosx, ¢=

=

. fx) =sinx, c¢=

&~13 )y

. fx)=Inx, ¢c=1

L fx)=ef, =1

flx) =sin2x, ¢=0

L fy=m(x2+1), ¢=0

. f(x) =secx, c = O (first three nonzero terms)

R SR = W

10. f(x) = tanx, c = O (first three nonzero terms)
In Exercises 11-14, prove that the Maclaurin series for the
function converges to the function for all x.

11. f(x) = cosx
13. f(x) = sinhx

12. f(x) = e %
14. f(x) = coshx

In Exercises 15-20, use the binomial series to find the
Maclaurin series for the function.

15. flx) = -(—l g
16. flx) = \/II—
- x

s ]
17. flx) = —\/m

18. f(x) = Y1+ x
19. f(x) = 1+ »*
20. f(x) = J1 + x

In Exercises 21-30, find the Maclaurin series for the function.
(Use the table of power series for elementary functions.)
21, f(x) = &x/2

22, glx) = e™

23. g(x) = sin 3x

24. f(x) = cos4x

25. f(x) = cos x*/?

26. g(x) = 2 sin x?

27. f(x) = %(e" — ™% = sinh x

28. f(x) = e* + e™* = 2coshx

29, f(x) = cos?x

30. f(x) = sinh~'x = Inx + Va2 + 1)

1
Hint: Integrate the series for 7)
( : Jx2+1

In Exercises 31-34, find the Maclaurin series for the function.
(See Example 7.)

31. f(x) = xsinx 32. h(x) = xcosx

sin x arcsin x
> x#0 == x#0
33 gx) =7 * 34, flx) = %

1, x=0 1, x=0

In Exercises 35 and 36, use a power series and the fact that
i2 = —1 to verify the formula.

35, glx) = %(e"c — ¢ ™) =sinx

36. g(x) = 3(e* + ) = cos x

H" In Exercises 37-42, find the first four nonzero terms of the

Maclaurin series for the function by multiplying or dividing the
appropriate power series. Use the table of power series for
elementary functions on page 682. Use a graphing utility to
graph the function and its corresponding polynomial approxi-
mation.

37. f(x) = e*sinx
39, h(x) = cos x In(1 + x)

sin x
41, glx) = T+x

38, g(x) = e*cosx
40. f(x) = e*In(1 + x)

2. ) = 7 ‘f:x

In Exercises 43—46, match the polynomial with its graph. [The
graphs are labeled (a), (b), (¢), and (d).] Factor a common
factor from each polynomial and identify the function approxi-
mated by the remaining Taylor polynomial.

(2) (b) ¥
e R e st et e e P S
4 2 4
_4--
© @ y
4.
I"ul“ X
4
Ba x5
43. y = 2—5 4. y=1x 2'+Z

46. y = x> — x* + x*
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In Exercises 47 and 48, find a Maclaurin series for f(x).
47. f(x) =f (e —1)ar

0
48. f(x) = f V1 +Bar

0

H"’ In Exercises 49-52, verify the sum. Then use a graphing utility
to approximate the sum with an error of less than 0.0001.

(—1y+1 L =12
n

—1) [(Zn_-ll-l)'] =sin 1

(Nl

49,

B
I

50.

i\t
[\®) —~

51.

s
S |
|
(\N

]
Il

=)
=

[\

52,
n!

(1) e

3
I

In Exercises 53 and 54, use the series representation of the func-
tion f to find lin‘} f(x) (f it exists).
x>

1 —cosx
x

53. flx) =

sin x

54. f(x) =

In Exercises 55-58, use a power series to approximate the value
of the integral with an error of less than 0.0001. (In Exercises 55
and 56, assume that the integrand is defined as 1 when x = 0.)

1 .
55, f LLLLAPN
0 X

56. fl/z arctan x dx
0 X

03
57. j V1 + x3dx
0.1

1/4
58. f xIn(x + 1) dx
0

Area In Exercises 59 and 60, use a power series to approximate
the area of the region. Use a graphing utility to verify the result.

/2
59. J. Vx cos x dx
0

¥
4 }

1
60. f cosx dx
0.5

Bl = W

Probability In Exercises 61 and 62, approximate the normal
probability with an error of less than 0.0001, where the proba-
bility is given by

Pla<x<b)= =12 g,

1 b
\/2771; :

fo) = —— 12

Var

61. PO < x < 1)
62. P(1 < x <?2)

In Exercises 63—-66, use a computer algebra system to find the
fifth-degree Taylor polynomial (centered at c¢) for the function.
Graph the function and the polynomial. Use the graph to
determine the largest interval on which the polynomial is a
reasonable approximation of the function.

63. f(x) =xcos2x, ¢=0
64. f(x) = sin%ln(l +x), ¢=0

65. g(x) = VxInx, c=1
66. h(x) = ¥xarctanx, c=1

Writing About Concepts

67. State the guidelines for finding a Taylor series.

68. If f is an even function, what must be true about the
coefficients a, in the Maclaurin series

f&) =Y ax
n=0
Explain your reasoning.
69. Explain how to use the series

=-S5

“on!
to find the series for each function. Do not find the series.
@ flx) =e™
() flx) = e*
(© flx) = xe*
@) flx) =e+ e

70. Define the binomial series. What is its radius of
convergence?




71. Projectile Motion A projectile fired from the ground
follows the trajectory given by

g g kx
] t - — - N« 2N —
4 < e kv, cos 0> TR ln<1 Vg COS 6)

where v, is the initial speed, 6 is the angle of projection, g is the
acceleration due to gravity, and k is the drag factor caused by
air resistance. Using the power series representation

¥ x*
l+x)=x—— 4=t -, - 1
In(1 +x) =x 7t 3% , l<x<
verify that the trajectory can be rewritten as
gx? kgx3 k% gx*
= (tan 6)x + :
y = (tan O)x 2yZcost §  3vgcos® @ 4y cost B

72. Projectile Motion Use the result of Exercise 71 to determine
the series for the path of a projectile launched from ground
level at an angle of § = 60°, with an initial speed of v, = 64
feet per second and a drag factor of k = 11—6.

73. Investigation Consider the function f defined by

e~ x#0
f()_{o, x=0.

(a) Sketch a graph of the function.

(b) Use the alternative form of the definition of the derivative
(Section 2.1) and L’Hopital’s Rule to show that f1(0) = 0.
[By continuing this process, it can be shown that f¢)(0) =
Oforn > 1]

(c) Using the result in part (b), find the Maclaurin series for f.
Does the series converge to f?

H“’ 74. Investigation

(a) Find the power series centered at 0 for the function

_ In(x2+1)
=

f)

X

(b) Use a graphing utility to graph f and the eighth-degree
Taylor polynomial Pg(x) for f.

(¢) Complete the table, where

Flx) = f ) w;r—l)dz and G(x) = j ) Py(t) dt.

) t 0

x 025 | 050 | 0.75 | 1.00 | 1.50 | 2.00
F(x)
G(x)

(d) Describe the relationship between the graphs of f and Py
and the results given in the table in part (c).

n

75. Prove that lim L -0 for any real x.
n—oo n'

SECTION 9.10 Taylor and Maclaurin Series 687
76. Find the Maclaurin series for

1 +x
1—x

f(x) =1In

and determine its radius of convergence. Use the first four
terms of the series to approximate In 3.

In Exercises 77-80, evaluate the binomial coefficient using the
formula

(k)=k(k—l}{k—2]{k-—3)- cek—n+1)

n n!

where k is a real number, n is a positive integer, and

(-
™ () . (5)
79. <Of> 80. ( 2/ 3)

81. Write the power series for (1 + x)* in terms of binomial
coefficients.

82. Prove that e is irrational. [Hint: Assume that e = p/q is
rational (p and g are integers) and consider

1 1
e—1+1+5+"'+a+"',]

83. Show that the Maclaurin series of the function
x

() e —

where F, is the nth Fibonacci number with ¥, = F, = 1 and
F,=F, ,+F, | forn=>3

(Hint: Write

X
- 7 )T
rJ— a, + ax + ax* +

and multiply each side of this equation by 1 — x — x2)

Putnam Exam Challenge

84. Assume that |f(x)| < 1 and |f"(x)| < 1 for all x on an interval
of length at least 2, Show that |f(x)| < 2 on the interval.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 1 and 2, write an expression for the nth term of the
sequence.

In Exercises 3-6, match the sequence with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) “;J (by
61 e 6| e
sl iy
4 pL P oo 4 s
2 -1
3 = °
2- R i 2 ol
® 85 10
! -2
[ [ o B
2 4 6 8 10 4= e
(c) “‘” (d) dy
! 10 e
4 1 ;
3 ° 8
.
2 ° 6 I
.
1 ° 4 I .
.
LA o . o e i 27 .
_1.’ « N0 S F i eesedesn
2 4 6 8 10
2 1
3.an=4+; 4. a,=4-n
- —1 _ 2yr—1
5. a, = 10(03)" 6. a, = 6(_3)

'dP' In Exercises 7 and 8, use a graphing utility to graph the first 10

terms of the sequence. Use the graph to make an inference about
the convergence or divergence of the sequence. Verify your infer-
ence analytically and, if the sequence converges, find its limit.

S5n+2 . nmw
7. a, = —n— 8. a, = Sm?
In Exercises 9-16, determine the convergence or divergence of
the sequence with the given nth term., If the sequence converges,
find its limit. (b and ¢ are positive real numbers.)

+
9.a”=nz1 10.a”=L
n n
i §,= 0 12, a, =
T2+ "% Tan
B.ag=Vn+1-n 14. a, = (1 + %)
n
15. a, = S“i/\z/’—l 16. a, = (b + cn)i/n

17. Compound Interest A deposit of $5000 is made in an account
that earns 5% interest compounded quarterly. The balance in
the account after n quarters is

An=5000<1+¥), n=1,23--.

(a) Compute the first eight terms of the sequence {A,}.

(b) Find the balance in the account after 10 years by computing
the 40th term of the sequence.

18. Depreciation A company buys a machine for $120,000.
During the next 5 years the machine will depreciate at a rate of
30% per year. (That is, at the end of each year, the depreciated
value will be 70% of what it was at the beginning of the year.)

(a) Find a formula for the nth term of the sequence that gives
the value V of the machine ¢ full years after it was
purchased.

(b) Find the depreciated value of the machine at the end of 5
full years.

ﬂd Numerical, Graphical, and Analytic Analysis In Exercises

19-22, (a) use a graphing utility to find the indicated partial
sum S, and complete the table, and (b) use a graphing utility to
graph the first 10 terms of the sequence of partial sums.

E |5[10]15]20] 25

Sk
o 3 n—1 o0 {_ |)u-<-|
v.5.6) P R

o0 (.__ 1)n+] o ]
) 2. 2w

In Exercises 23-26, determine the convergence or divergence of
the series.

23. S (0.82) 24. S (182
n=0 n=0
= (— 1) & 2+ 1
25. ”21 Inn 2. "20 3n + 2

In Exercises 27-30, find the sum of the convergent series.

o (2N
27. =

HZO <3>

o=} 2n+2

n=0 3"

& (1 1
29‘ 1120 (5 B E)

0 S|G - raal

n=0

28.
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In Exercises 31 and 32, (a) write the repeating decimal as a H’ Numerical, Graphical, and Analytic Analysis In Exercises 53

geometric series and (b) write its sum as the ratio of two integers.

31. 0.09 32. 0.923076

33. Distance A ball is dropped from a height of 8 meters. Each
time it drops h meters, it rebounds 0.7k meters. Find the total
distance traveled by the ball.

34. Salary You accept a job that pays a salary of $32,000 the first
year. During the next 39 years, you will receive a 5.5% raise
each year. What would be your total compensation over the
40-year period?

35. Compound Interest A deposit of $200 is made at the end of
each month for 2 years in an account that pays 6% interest,
compounded continuously. Determine the balance in the
account at the end of 2 years.

36. Compound Interest A deposit of $100 is made at the end of
each month for 10 years in an account that pays 3.5%,
compounded monthly. Determine the balance in the account at
the end of 10 years.

In Exercises 37-40, determine the convergence or divergence of
the series.

Inn

1 1 x (1 1
=t <”2 "> . nzl (”2 2”>

In Exercises 41— 44, determine the convergence or divergence of
the series.

I [=x]
41, —
,,21 vt 2n ;;1 -'I'(H i "")
("u -1) 1

2-4- -(2n) 3 —5

0 S

n=1

b

44,

I

In Exercises 45—48, determine the convergence or divergence of
the series.

nn o (_l)n \/ﬁ
. 1122 4. nzl n+1
( 1)"” =) (_ )n In n3
. ”24 n—3 - 1122 n

In Exercises 49-52, determine the convergence or divergence of
the series.

i n
49. =
i
n=1 e
&K n!
50. S &
i=1€
x 211

51> 5

52. )

and 54, (a) verify that the series converges, (b) use a graphing
utility to find the indicated partial sum S, and complete the
table, (c) use a graphing utility to graph the first 10 terms of
the sequence of partial sums, and (d) use the table to estimate
the sum of the series.

n 511015

o) (_ 1)n~1n

53. . —
”21(> 541121 n3+5

55. Writing Use a graphing utility to complete the table for (a)
p =2and (b) p = 5. Write a short paragraph describing and
comparing the entries in the table.

2

5010|2030 | 40

|-

3

n=1
“1
L &

56. Writing You are told that the terms of a positive series appear
to approach zero very slowly as n approaches infinity. (In fact,
@75 = 0.7.) If you are given no other information, can you
conclude that the series diverges? Support your answer with an
example.

In Exercises 57 and 58, find the third-degree Taylor polynomial
centered at c.

57. fx) = e %, ¢=0

58. f(x) = tanx, ¢ = —%

In Exercises 59—62, use a Taylor polynomial to approximate the
function with an error of less than 0.001.

59. sin 95° 60. cos(0.75)

61. In(1.75) 62. ¢7025

63. A Taylor polynomial centered at O will be used to approximate
the cosine function. Find the degree of the polynomial required
to obtain the desired accuracy over each interval.

Maximum Error Interval
(a) 0.001 [—0.5,05]
(b) 0.001 [—1,1]

(¢) 0.0001 [—0.5,05]
(d) 0.0001 [-2,2]

HG' 64. Use a graphing utility to graph the cosine function and the

Taylor polynomials in Exercise 63.
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In Exercises 65-70, find the interval of convergence of the
power series. (Be sure to include a check for convergence at the
endpoints of the interval.)

GO x " (e}
5 — "
65. 2 ( I U) 66. nZO (2x)
) =3 (_ 1 }n [_1- . 2)!1 o) 3_!1 ()C _—2)11
m:%|{”+”3 @”; "
[} =) (x — 2)n
69, x — 2)" 70.
n§=:0 " (x ) "20 2

In Exercises 71 and 72, show that the function represented by
the power series is a solution of the differential equation.

7 oo | x2n
8 ey
X2y’ + xy’ +x% =0
_ o) (_3)r1 x2n
72, y = E T

n=0
Y+ 3xy' +3y=0

In Exercises 73 and 74, find a geometric power series centered
at 0 for the function.

2
73. =
3. 80 =5
3
74. h(x) = 2+ x
75. Find a power series for the derivative of the function in

Exercise 73.

76. Find a power series for the integral of the function in

Exercise 74.

In Exercises 77 and 78, find a function represented by the series
and give the domain of the function.

2 4,8 5.
77.1+3x+9x +27x +

78.8 = 20— 3) + 30— 3P — - I+ - -

In Exercises 79-86, find a power series for the function
centered at c.

79. f(x) =sinx, ¢ = 3777 80. f(x) =cosx, c¢= —%T
8. f(x) =3%, ¢=0 82. f(x) = cscx, c=g
(first three terms)
8&f@=%,c=—1 84. fx) = Vx, c=4
1
_ 5 = = s =
85. g)=31+x, ¢c=0 86. hlx) 0+ 27 c=0

In Exercises 87-92, find the sum of the convergent series by
using a well-known function. Identify the function and explain
how you obtained the sum.

7. 50 g s S ey
”'iz%
n=0 #
%H§3W
2n
91. ,Zo (=1 3_2,;2(2,,)1
92. i"; (1) 3ﬁ D!

93. Writing One of the series in Exercises 41 and 49 converges
to its sum at a much lower rate than the other series. Which
is it? Explain why this series converges so slowly. Use a

graphing utility to illustrate the rate of convergence.

94. Use the binomial series to find the Maclaurin series for

1

fx) = s

Forming Maclaurin Series
the Maclaurin series for ¢2*

95. Determine the first four terms of

(a) by using the definition of the Maclaurin series and the
formula for the coefficient of the nth term,
a, = f(0)/n!.

(b) by replacing x by 2x in the series for e,

(c) by multiplying the series for ¢* by itself, because e2*
er - e,

96. Forming Maclaurin Series Follow the pattern of Exercise

95 to find the first four terms of the series for sin 2x. (Hint:
sin 2x = 2 sin x cos x.)

In Exercises 97-100, find the series representation of the func-
tion defined by the integral.

Ysin g
97. —
[

X oy /f
98. cos ——dt
o 2

99, f m(t_+1)dt
0 t

100. f
0

In Exercises 101 and 102, use a power series to find the limit (if
it exists). Verify the result by using L’H#pital’s Rule.

dt

e — 1

dt

arctan x
Vx

arcsin x

101. lim

x—0*

102. lim

x—0 X



1.

The Granger Collection

2.

3.

PS. Problem Solving 691

See www.CalcChat.com for worked-out solutions to odd-numbered exercises

Problem Solving

The Cantor set (Georg Cantor, 1845-1918) is a subset of the unit
interval [0, 1]. To construct the Cantor set, first remove the

middle third (%, %) of the interval, leaving two line segments. For
the second step, remove the middle third of each of the two
remaining segments, leaving four line segments. Continue this
procedure indefinitely, as shown in the figure. The Cantor set
consists of all numbers in the unit interval [0, 1] that still remain.

L ]
J 1

0 |
f——————— P
0 p 2 |
3 3
— —
0 | 2 1 2 7 8 1
[ 9 3 3 9 9

(a) Find the total length of all the line segments that are
removed.

(b) Write down three numbers that are in the Cantor set.

(c) Let C, denote the total length of the remaining line segments
after » steps. Find lim C,.
n—oo

GEORG CANTOR (1845-1918)

Cantor was a German mathematician
known for his work on the
development of set theory, which is the
basis of modern mathematical analysis.
This theory extends to the concept of
infinite (or transfinite) numbers.

It can be shown that

=N | _ 77.2 .
> S [see Example 3(b), Section 9.3].

n=1

| a?

n—17 8"

Let T be an equilateral triangle with sides of length 1. Let a, be
the number of circles that can be packed tightly in n rows inside
the triangle. For example, ¢, = 1, a, = 3, and a; = 6, as shown
in the figure. Let A, be the combined area of the a,, circles. Find

lim A,.
n—oo

Use this fact to show that E

n=1

4. Identical blocks of unit length are stacked on top of each other at

the edge of a table. The center of gravity of the top block must lie
over the block below it, the center of gravity of the top two blocks
must lie over the block below them, and so on (see figure).

| 3 2|

(a) If there are three blocks, show that it is possible to stack
them so that the left edge of the top block extends % unit
beyond the edge of the table.

(b) Is it possible to stack the blocks so that the right edge of the
top block extends beyond the edge of the table?

(c) How far beyond the table can the blocks be stacked?

. (a) Consider the power series

Yaxt=1+2x+3+x>+2+3° +x°+ - - -
n=0

in which the coefficients ¢, = 1,2, 3, 1,2,3,1,. . . are
periodic of period p = 3. Find the radius of convergence
and the sum of this power series.

(b) Consider a power series

n
2

n=0

in which the coefficients are periodic, (a,,, = a,) and
a, > 0. Find the radius of convergence and the sum of this
power series.

. For what values of the positive constants @ and b does the

following series converge absolutely? For what values does it
converge conditionally?

b a b
__+___
472737,

+ +

+ ..

oY
oo

~Q

a_
5

. (2) Find a power series for the function

flx) = xe*

centered at 0. Use this representation to find the sum of the
infinite series

& 1
2 nl(n + 2)

n=1

(b) Differentiate the power series for f(x) = xe*. Use the result

to find the sum of the infinite series

=

X n+1

2

n=0 n!
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8. Find fU2(0) if f(x) = e**. (Hint: Do not calculate 12
derivatives.)

9. The graph of the function

1, x=0
flx) = ysinx

> x>0

is shown below. Use the Alternating Series Test to show that the

improper integral J. 1 f(x) dx converges.

|
10. T i i .
0. (a) Prove that J; 027 dx converges if and only if p > 1

(b) Determine the convergence or divergence of the series
. 1

~, nin(n?)’

11. (a) Consider the following sequence of numbers defined

recursively.
a =3
a, = /3

3+ V3
Ay = Bl iy an

Write the decimal approximations for the first six terms of
this sequence. Prove that the sequence converges and find
its limit.

as

(b) Consider the following sequence defined recursively by
=Vaanda,,, = Va+a, wherea > 2.

n

fJa+f,!a+ a+

Prove that this sequence converges and find its limit.

12. Let {a,} be a sequence of positive numbers satisfying

1
hm (a)/"=1 < s> 0. Prove that the series Ea s
n=1
converges.

. . . D 1
13. Consider the infinite series 2 T
n=1

(a) Find the first five terms of the sequence of partial sums.
(b) Show that the Ratio Test is inconclusive for this series.

(c) Use the Root Test to test for the convergence or divergence
of this series.

14. Derive each identity using the appropriate geometric series.

(a) @ = 1.01010101 . (b) @ = 10204081632 .

15. Consider an idealized population with the characteristic that
each member of the population produces one offspring at the
end of every time period. Each member has a life span of three
time periods and the population begins with 10 newborn
members. The following table shows the population during the
first five time periods.

Time Period
Age Bracket 1 2 3 4 5
0-1 10 10 20 40 70
1-2 10 10 20 40
2-3 10 10 20
Total 10 20 40 70 130

The sequence for the total population has the property that
Sll = S

n-—1

+S, ,+S, 5 n> 3.
Find the total population during each of the next five time
periods.

16. Imagine you are stacking an infinite number of spheres of
decreasing radii on top of each other, as shown in the figure.
The radii of the spheres are 1 meter, 1/ /2 meter, 1//3 meter,
etc. The spheres are made of a material that weighs 1 newton
per cubic meter.

(a) How high is this infinite stack of spheres?
(b) What is the total surface area of all the spheres in the stack?
(c) Show that the weight of the stack is finite,

17. (a) Determine the convergence or divergence of the series
i 1
n=1 2n

(b) Determine the convergence or divergence of the series

i (sinz—ln —s

n=1

1
M on + 1>‘



