From your studies of calculus thus:
far, you know that a definite integral
has finite limits of integration and a
continuous integrand. In Chapter 8,
you will study improper integrals.
Improper integrals have at least
one infinite limit of integration or
have an integrand with an infinite
discontinuity. You will see that
improper integrals either converge
or diverge.

Integration Techniques,
L’Hopital’s Rule, and
Improper Integrals

The NASA Hubble Space Telescope image of a planetary nebula
nicknamed the “Cat’s Eye Nebula™ gives just a glimpse of the kinds
of things you might see if you could travel through space. Would it
be possible to propel a spacecraft an unlimited distance away from
Earth’s surface? Why?

P. Harrington and K.J. Borkowski (University of Maryland), and NASA
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Integration Techniques, L’Hopital’s Rule, and Improper Integrals

Basic Integration Rules

* Review procedures for fitting an integrand to one of the basic integration rules.

Fitting Integrands to Basic Rules

In this chapter, you will study several integration techniques that greatly expand the set
of integrals to which the basic integration rules can be applied. These rules are reviewed
on page 520. A major step in solving any integration problem is recognizing which
basic integration rule to use. As shown in Example 1, slight differences in the integrand
can lead to very different solution techniques.

@J—) EXAMPLE | A Comparison of Three Similar Integrals

EXPLORATION

A Comparison of Three Similar
Integrals Which, if any, of the
following integrals can be evaluated
using the 20 basic integration rules?
For any that can be evaluated, do so.
For any that can’t, explain why.

| (Lo M
N S

b, 3x =
I =x2

3x? dx
e | ——
1 = x2

NOTE Notice in Example 1(c) that
some preliminary algebra is required
before applying the rules for integration,
and that subsequently more than one
rule is needed to evaluate the resulting
integral.

Find each integral.
4 4x 4x?
a.sz_l_gdx b.fx—2+9dx c.fx2+9dx

Solution

a. Use the Arctangent Rule and let u = x and @ = 3.

4 1
fx2+9dx_4fx2+32dx

. 4(l arctan £> + C

Constant Multiple Rule

Arctangent Rule

3 3

4 X
= 3 arctan - + C Simplify.

3

b. Here the Arctangent Rule does not apply because the numerator contains a factor
of x. Consider the Log Rule and let u = x2 + 9. Then du = 2x dx, and you have

4% dx =2 sl Constant Multiple Rul
= onstan ulliple kule
X2+ 9 2 +9 8
du
=2|— Substitution: 4 = x%2 + 9
u

= 2ln|u| +C=2mkx*+9) + C Log Rule

¢. Because the degree of the numerator is equal to the degree of the denominator, you
should first use division to rewrite the improper rational function as the sum of a
polynomial and a proper rational function.

4x? 36
fmdx—f(“‘m)dx
1
—f4dx—36fmdx

=4x — 36(% arctan E) +C

Rewrite using long division.
Write as two integrals.

Integrate.

3

=4x — 12 arctan£ + C

Simplity.
3 plity

@;‘—- indicates that in the HM mathSpace® CD-ROM and the online Eduspace® system
Jor this text, you will find an Open Exploration, which further explores this example using the
computer algebra systems Maple, Mathcad, Mathematica, and Derive.
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The area of the region is approximately
1.839.
Figure 8.1

STUDY TIP Rules 18, 19, and 20 of the
basic integration rules on the next page
all have expressions involving the sum or
difference of two squares:

2
a? + u?
u? — a2

With such an expression, consider the
substitution # = f(x), as in Example 3.
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EXAMPLE 2 Using Two Basic Rules to Solve a Single Integral

"x+3

Evaluate e
0 Vv 4 e x2

Solution Begin by writing the integral as the sum of two integrals. Then apply the
Power Rule and the Arcsine Rule as follows.

dx.

1 1 15
= —%J: (4 — x)"V2(=2x)dx + 3 Ll—zz%;dx
= [—(4 — x3)172 4+ 3 arcsin %];
=(—J§+g>—(—2+o)
~ 1.839
See Figure 8.1. —

TECHNOLOGY Simpson’s Rule can be used to give a good approximation of
the value of the integral in Example 2 (for n = 10, the approximation is 1.839).
When using numerical integration, however, you should be aware that Simpson’s
Rule does not always give good approximations when one or both of the limits of
integration are near a vertical asymptote. For instance, using the Fundamental
Theorem of Calculus, you can obtain

1.99 B &

—F—dx
0 ~ 4 — x2
Applying Simpson’s Rule (with n = 10) to this integral produces an approximation
of 6.889.

=~ 6.213.

EXAMPLE 3 A Substitution Involving a? — u?

Find

Xi
f \/T 6 —x°
Solution Because the radical in the denominator can be written in the form
\/aZ — 2 = \/47_ (xa)z
you can try the substitution u = x3. Then du = 3x? dx, and you have

S N o -l "
\/’m”‘ =3 16_ =) Rewrite integral.

= %IJ% Substitution: u

x3

1 .U
= —arcsin— + C Arcsine Rule
3 4
1 . X3 . .
= —arcsin— + C. Rewrite as a function of x.
3 4 EE——



520 CHAPTER 8 Integration Techniques, L’Hopital’s Rule, and Improper Integrals

Review of Basic Integration
Rules (a > 0)

1. fkf(u) du = kff(u) du
2. [[fw) + g6 du =

ff(u)duifg(u) du
3. fdu=u+C
4. fu"du=:’:ll+C,n¢—1
5. f%=1n|u|+c
6. J-e"du=e“+C

1
7. fa du—(m)a + C

8. fsinudu = —cosu + C

9. fcosudu=sinu+C

10. ftanudu = —In|cos u| + C
11. fcotudu = In|sinu| + C

12. fsecudu =

In|sec u + tanu| + C
13. fcscudu =

—In|csc u + cotu| + C

14, [sec?udu=ranu + C
15. fcsczudu=—cotu+C
16. fsecutanudu=secu+C
17. fcscucotudu=—cscu+C

du .U
18. f—m— arcsm;+ C
1
19. ji= ~arctan ~ + C
a a

a?+ u?
du 1 |u|
20. fm = ;arcsec . +C

Surprisingly, two of the most commonly overlooked integration rules are the Log
Rule and the Power Rule. Notice in the next two examples how these two integration
rules can be disguised.

EXAMPLE 4 A Disguised Form of the Log Rule

. 1
Flndf Tzt dx.

Solution  The integral does not appear to fit any of the basic rules. However, the
quotient form suggests the Log Rule. If you let u = 1 + e*, then du = e* dx. You can
obtain the required du by adding and subtracting e* in the numerator, as follows.

1 I 4 e —e* B
- adxX = o L wax and subtract e¢* 1n numerator.
1+e*d g d Add and sub ] t
lL+er e , .
== 1+ o = 1—+ = dx Rewrite as two fractions.
€ e
e dx
=lde— | —— Rewrite as two integrals.
1+ e*
=x—In(l +e¥)+C Integrate. —

NOTE There is usually more than one way to solve an integration problem. For instance, in
Example 4, try integrating by multiplying the numerator and denominator by e * to obtain an
integral of the form — [ du/u. See if you can get the same answer by this procedure. (Be
careful: the answer will appear in a different form.)

EXAMPLE 5 A Disguised Form of the Power Rule

Find J’ (cot x)[In(sin x)] dx.

Solution  Again, the integral does not appear to fit any of the basic rules. However,
considering the two primary choices for u [u = cot x and u = In(sin x)], you can see
that the second choice is the appropriate one because

_ cosx

u=1In(sinx) and du —— dx = cot x dx.
Sin x
So,
f (cot x)[In(sin x)] dx = f udu Substitution: « = In(sin x)
2
=L + C Integrate.
2
1 . i L
= E[ln(sm x)]?+ C. Rewrite as a function of x.

NOTE In Example 5, try checking that the derivative of
“n(sin )P +

is the integrand of the original integral.



TECHNOLOGY  If you have
access to a computer algebra system,
try using it to evaluate the integrals in
this section. Compare the form of the
antiderivative given by the software
with the form obtained by hand.
Sometimes the forms will be the same,
but often they will differ. For instance,
why is the antiderivative In 2x + C
equivalent to the antiderivative

Inx + C?

SECTION 8.1 Basic Integration Rules 521

Trigonometric identities can often be used to fit integrals to one of the basic
integration rules.

EXAMPLE 6 Using Trigonometric ldentities
Find f tan” 2x dx.

Solution  Note that tan? u is not in the list of basic integration rules, However, sec? u
is in the list. This suggests the trigonometric identity tan? u = sec? u — 1. If you let
u = 2x, then du = 2 dx and

Substitution: ¥ = 2x

ftanz 2x dx = %f tan? u du

Trigonometric identity

= %Jy (sec?u — 1) du

_f _1
—zfsec udu 2fdu

1
=—tanu—E+C

Rewrite as two integrals

Integrate.
2 2
1 . -~ w =
=—tan2x — x + C. Rewrite as a tunction of x,
2 W T———

This section concludes with a summary of the common procedures for fitting
integrands to the basic integration rules.

Procedures for Fitting Integrands to Basic Rules

Technique

Expand (numerator).

Separate numerator.
Complete the square.

Divide improper rational function.

Add and subtract terms in numerator.

Use trigonometric identities.

1 1 1 —si
Multiply and divide by Pythagorean conjugate. = ( )( = x) =

Example
(14+e)2=1+42e*+ e*
IL+x - L ¥ X
x2+1 x2+1 x2+1
1 = 1
-2 JT-G-1)?
i .
2=k | e )
2x e+ 2=2 2x + 2 2

x2+2x+1:J-c2+2)c+1:x2+2x+1_(x+1)2
cot?x = csc?x — 1

1 — sinx

"1 —sin?x

1 + sinx 1 + sinx/\1 — sinx

NOTE Remember that you can separate numerators but not denominators. Watch out for this
common error when fitting integrands to basic rules.

| 1 1
._+_
,\13+]?Lx2 1

Do not separate denominators.
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Exercises for Section 8.1

Integration Techniques, L’H6pital’s Rule, and Improper Integrals

See www CalcChat.com for worked-out solutions to odd-numbered exercises,

In Exercises 1-4, select the correct antiderivative.

LY x

Tdx X1
@2/ +1+cC
© i+ i+cC

(b) Vx*2+14+C
(@ Inx>+1)+C

2 B _X
Tdx x2+1
251 +
(a) In/x 1+C (b) ( Ty 1) + C
(c) arctanx + C (d In(x2+ 1)+ C
dy_ 1
= de x4+ 1
@ /2 +1+C D ——
(2+1)2

(c) arctanx + C d mx>+ 1)+ C

d
4, ;é = xcos(x? + 1)

(a) 2xsin(x2+ 1) + C
(© 3sin(x2 + 1) + C

(b) —3sin(x? + 1) + C
(d) —2xsin(x + 1) + C

In Exercises 5-14, select the basic integration formula you
can use to find the integral, and identify # and a when
appropriate.

5. j(?ax — 2 dx 6. j . ki T
2—t+2
1 2
k f_ﬁ(f; 2/ “ > ffza* —1pra’
9. f == B 10. f —2x i
J1 = ¢2 Jxt—4

11. f tsin t2 dt 12. f sec 3x tan 3x dx

dx

. 1
13. coS x)es"* dx 14, | ——
j( x)e f,-;\/.\‘*’ -4

In Exercises 15-50, find the indefinite integral,

2
16. jm dt

= 18. fﬂé/ﬁ —1ld

5

> 4)—5 dz
1 3

+ =
R A f -~ @

2= 3

v)

1 d

15. f6(x-—4)5dx

17

19
= x+ 1

A e 22. le e

X

a 2. fx_4dx

e 1 1
BT a® 26'j(3x—1_3x+1)dx

23

|
|
|
|

X

3
27j1+2x 28.fx<l+i>dx
29, fxcos 2mx? dx 30. jsec 4dx dx
31. fcsc*n-xcothdx 32. f%dx
33. J e dx 34. fcsc2 xecotr gy

5
3s. f T 36.f3e'r_2dx
In 1
37. j 38. f (tan x)[In(cos x)] dx
39, fi I—smx 40.j‘1+.cosadol
Cos X sin
41. 16 42 ;dx
cos l? cosf— 1" * ) 3(secx — 1)
1
43, f = (”r = ”: dt 44, f4—+ 2 dx
l/r
45. fta n2/9) , 4. | Sz
47,
f V6x — x2

48. j dx
x—l)\/4x —8+3

2 jcu- TR e

1
f\/l—4x—.\‘*’ *

H“' Slope Fields In Exercises 51-54, a differential equation, a

point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point, (b) Use integration to
find the particular solution of the differential equation and use
a graphing utility to graph the solution. Compare the result
with the sketches in part (a). To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

s _ D_ e
51. B Wi r 52. i tan?(2x)
1
(0.-2) 0,0

t /- F—=7 1

d
=




d d |
53. 2 = (secx + tan x)? 54, X
dx dx 4x — x?
1
©.1) (21)
¥ Yy
A i
1729+ /-~ / P R P R |
& — il =~ /j’,/ffff_’ff_’.fﬁff
e | 7=~ 11 ///////////////:
=W, =l /=~ & | I R PP |
=rin ey s/ —~F I /4
- rall /—I‘ { 7 —~ ¢ _;I
F—— e —f——— X defom x
=l —F 7 —~19 sy
I S ,j
) £l 7=~/ 3 o+ ‘/I
= ol - —=Elt 7 — - / VPR el
Pl s bt rs——- )1 - ////////////ffjl
- I/—9!> V7= N1 Dbt st sy

pP‘ Slope Fields 1In Exercises 55 and 56, use a computer algebra

system to graph the slope field for the differential equation and
graph the solution through the specified initial condition.

dy

. =2 = 0.2y, .
55. =02 y(0) = 3

dy

56. = -=5—y y0)=1

In Exercises 57-60, solve the differential equation.

dy _ o2 dr _(L+e)?
57. 2= (1 +e) 8. =
1
59. (4 + tan?x)y’ = sec? 60. y/ = ————
( an )y ’ YT A = 1

In Exercises 61-68, evaluate the definite integral. Use the inte-
gration capabilities of a graphing utility to verify your result.

4 i
61. J cos 2x dx 62. f sin t cos t dt
i 0

I e - .
63. J ye " iy 64. f Iﬁ dlx
0 1 X

4 2

; f— 12

65. I| 22— 4 66. f T
(i \/.\f' +9 | A

AL |
67. T A :‘J’\ 68. T = d’,\'
,[1 4 4 9+ o V25 —a?

Area In Exercises 69-74, find the area of the region.

69. y = (—2x + 5)3/2
)’
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3x + 2 3
G 249 72'y_x2+1
y v
0.8 5
4

S (2 3

P{D' In Exercises 75-78, use a computer algebra system to find the

integral. Use the computer algebra system to graph two
antiderivatives. Describe the relationship between the two
graphs of the antiderivatives.

|
7 f:\,: Fax+ 139
76. =2l
2+ ax+ 139
|
: ———— !
g f | + sin f-JtH

78. f(‘ e ‘)‘d_:;
Writing About Concepts

In Exercises 79-82, state the integration formula you would
use to perform the integration. Explain why you chose that
formula. Do not integrate.

79. jx(xz + 1)3dx 80. jx sec(x? + 1) tan(x? + 1) dx

1
81. fTTldx 82. fxz—+14x

83. Explain why the antiderivative y, = ¢**+ is equivalent to
the antiderivative y, = Ce*

84, Explain why the antiderivative y, = sec? x + C, is equiva-
lent to the antiderivative y, = tan?x + C.
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85. Determine the constants g and b such that

sin x + cos x = asin(x + b).

Use this result to integrate f ———
sin x + Ccos x

86. Area The graphs of f(x) = x and g(x) = ax? intersect at the
points (0, 0) and (1/a, 1/a). Find a (a > 0) such that the area
of the region bounded by the graphs of these two functions is %

il
fLI‘-’ 87. Think About It Use a graphing utility to graph the function

f(x) = H(x® — 7x? + 10x). Use the graph to determine whether

5
f f(x) dx is positive or negative. Explain.
0

88. Think About It When evaluating

1
f x2 dx
=i

. . . du
is it appropriate to substitute u = x2, x = /u, and dx =

2Vu

to obtain

1 1

= f Judu = 0?
2 ),

Explain.

Approximation In Exercises 89 and 90, determine which value
best approximates the area of the region between the x-axis and
the function over the given interval. (Make your selection on the
basis of a sketch of the region and not by integrating.)

4x

8. /0 =5 [0.2]
@3 M1 © -8 (@8 (o 10
4
9. f() = 5 [0.2]
@3 M1 © -4 @4 (e 10

Interpreting Integrals In Exercises 91 and 92, (a) sketch the
region whose area is given by the integral, (b) sketch the solid
whose volume is given by the integral if the disk method is used,
and (c) sketch the solid whose volume is given by the integral if
the shell method is used. (There is more than one correct answer
for each part.)

2
91. f 27 x*dx

4
92. f Ty dy
0

0

93. Volume The region bounded by y = e™*’,y = 0, x = 0, and
x = b (b > 0) is revolved about the y-axis.

(a) Find the volume of the solid generated if » = 1.

(b) Find b such that the volume of the generated solid is % cubic
units.

94, Arc Length Find the arc length of the graph of y = In(sin x)
from x = w/4 to x = w/2.

95. Surface Area Find the area of the surface formed by
revolving the graph of y = 2/x on the interval [0, 9] about the
X-axis.

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

96. Centroid Find the x-coordinate of the centroid of the region
bounded by the graphs of

0, x=0, and x=4.

5
y = /—25_)62’ y =

In Exercises 97 and 98, find the average value of the function
over the given interval.

97. flx) = L -3<x<3

T+

98. f(x) =sinnx, 0 < x < 7/n, nis a positive integer.

fjﬁ’ Arc Length 1In Exercises 99 and 100, use the integration

capabilities of a graphing utility to approximate the arc length
of the curve over the given interval.

99. y = tan7x, [0,3] 100. y = x/3, [1, 8]

101. Finding a Pattern

(2) Find f cos? x dv.
(b) Find f cos’ x d.

(¢) Find f cos’ x dx.
(d) Explain how to find [cos®xdx without actually
integrating.
102. Finding a Pattern

(a) Write [tan?xdx in terms of [tanxdx. Then find
J tan3 x dx.

(b) Write [ tan’ x dx in terms of [ tan® x dx.

(c) Write [ tan?**! x dx, where k is a positive integer, in terms
of [ tan?*~ ! x dx.

(d) Explain how to find [tan' xdx without actually
integrating.
103. Methods of Integration Show that the following results are
equivalent.

Integration by tables:
f\/x2 Fldx= %(x\/xz Tl+mfx+ JZ+1|)+C
Integration by computer algebra system:

f V¥ + ldx = %(x\/)c2 +1+ arcsinh(x)) +C

Putnam Exam Challenge

a4 ——
104, Evaluate j In9 ~ x) d ;
2 /In(@ — x) + VIn(x + 3)

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.




EXPLORATION

Proof Without Words Here is a
different approach to proving the
formula for integration by parts.
Exercise taken from “Proof Without
Words: Integration by Parts” by
Roger B. Nelsen, Mathematics
Magazine, April 1991, by permission
of the author.

u=flx) v=gkx
5= g(b) S5 A

r=g(a)

= : - u
p=fla) q=fb)

Area + Area =gs — pr

s P (qu)
fudv+f vdu=[uv]
> 9 (pr)
s (g.%) P
f udv = [uv] = f vdu
, (pn) P

Explain how this graph proves the
theorem. Which notation in this proof
is unfamiliar? What do you think it
means?
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Integration by Parts

¢ Find an antiderivative using integration by parts.
¢ Use a tabular method to perform integration by parts.

Integration by Parts

In this section you will study an important integration technique called integration by
parts. This technique can be applied to a wide variety of functions and is particularly
useful for integrands involving products of algebraic and transcendental functions. For
instance, integration by parts works well with integrals such as

fxlnxdx, fxze"dx, and fe"sinxdx.

Integration by parts is based on the formula for the derivative of a product

d dv du
dx[uv]—udx-l-vdx

=uv’' + vu’

where both u and v are differentiable functions of x. If #” and v’ are continuous, you
can integrate both sides of this equation to obtain

uv=juv’dx+fvu’dx
=fudv+fvdu.

By rewriting this equation, you obtain the following theorem.

THEOREM 8.1 Integration by Parts

If u and v are functions of x and have continuous derivatives, then

fudv=uv—J‘vdu.

This formula expresses the original integral in terms of another integral. Depend-

ing on the choices of u and dv, it may be easier to evaluate the second integral than
the original one. Because the choices of u and dv are critical in the integration by parts
process, the following guidelines are provided.

Guidelines for Integration by Parts

1.

2.

Try letting dv be the most complicated portion of the integrand that fits
a basic integration rule. Then u will be the remaining factor(s) of the integrand.

Try letting « be the portion of the integrand whose derivative is a function
simpler than u. Then dv will be the remaining factor(s) of the integrand.
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NOTE In Example 1, note that it is
not necessary to include a constant of
integration when solving

v = fe"'dx =e'+ C,.

To illustrate this, replace v = ¢* by

v = e* + C, and apply integration by
parts to see that you obtain the same
result.

FOR FURTHER INFORMATION To see
how integration by parts is used to prove
Stirling’s approximation

In(n!) =nlnn—n

see the article “The Validity of Stirling’s
Approximation: A Physical Chemistry
Project” by A. S. Wallner and K. A.
Brandt in Journal of Chemical
Education.

TECHNOLOGY  Try graphing

3 3
2lnxdx and ¥ = L
jx nx 3lnx 9

on your graphing utility. Do you get
the same graph? (This will take a
while, so be patient.)

Integration Techniques, L'Hopital’s Rule, and Improper Integrals

EXAMPLE | Integration by Parts
L

Find f xe” dx.

Solution  To apply integration by parts, you need to write the integral in the form
J u dv. There are several ways to do this.

J (x) (eVdy), f{c'-'}(..t‘ dx), f (1) (xe* dx), J’(.a'e"')(_d.r)
M oo @ W o

The guidelines on page 525 suggest choosing the first option because the derivative
of u = x is simpler than x, and dv = e*dx is the most complicated portion of the
integrand that fits a basic integration formulia.

v = fdv = fe-‘dx = e~

du = dx

dv = e* dx
u=x

Now, integration by parts produces

fudv = uv — fvdu
jxe*’ dx = xe* — fe"dx

=xe¥ —e' + C.

Integration by parts formula

Substitute.

Integrate.

To check this, differentiate xe* — e* + C to see that you obtain the original integrand.

EXAMPLE 2 Integration by Parts
L |

Find fxz In x dx.

Solution 1In this case, x? is more easily integrated than Inx. Furthermore, the
derivative of In x is simpler than In x. So, you should let dv = x2 dx.

3
dv = x%dx v=fx2dx=x?

1
u=1Inx du = —dx
x

Integration by parts produces

fudv=uv—fvdu
3 3
2 X [(ENL
fx In x dx 3 Inx f(3><x>dx

Integration by parts formula

Substitute.

T O -
= 3 In x 3 fx dx Simplify.
3 3
= % Inx — % + C. Integrate.
You can check this result by differentiating.

d[x* B o 2 1) x2
—| =1 — ===+ 2N __ B4 52
dx[3 nx 9} 3<x (In x)(x?) 7= Inx



(13)

y = arcsin x

(S}

The area of the region is approximately
0.571.
Figure 8.2
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One surprising application of integration by parts involves integrands consisting

of a single term, such as [ In x dx or [ arcsin x dx. In these cases, try letting dv = dkx,
as shown in the next example.

EXAMPLE 3 An Integrand with a Single Term

|
Evaluate f arcsin x dx.

0

Solution Let dv = dx.

dv = dx v=fdx=x

u = arcsin x du =

Integration by parts now produces

f” o= 7 = f 7 di ig;c;flrl?;ion by parts
j arcsin x dx = x arcsin x — f ﬁ dx Substitute.
= x arcsin x + %f (1 — x3)~172(—=2x) dx Rewrite.
= yarcsinx + /1 — x2 + C. Integrate.

Using this antiderivative, you can evaluate the definite integral as follows.

1
f arcsin x dx = [x arcsin x + 1 — xz]
0 0

o
_2 1

=~ (0.571

The area represented by this definite integral is shown in Figure 8.2. ——

TECHNOLOGY Remember that there are two ways to use technology to eval-
uate a definite integral: (1) you can use a numerical approximation such as the
Trapezoidal Rule or Simpson’s Rule, or (2) you can use a computer algebra system
to find the antiderivative and then apply the Fundamental Theorem of Calculus. Both
methods have shortcomings. To find the possible error when using a numerical
method, the integrand must have a second derivative (Trapezoidal Rule) or a fourth
derivative (Simpson’s Rule) in the interval of integration: the integrand in Example
3 fails to meet either of these requirements. To apply the Fundamental Theorem of
Calculus, the symbolic integration utility must be able to find the antiderivative.

Which method would you use to evaluate
1
f arctan x dx?
0
Which method would you use to evaluate

I
J arctan x2 dx?
0
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EXPLORATION

Try to find
J et cos 2xdy

by letting ¥ = cos 2x and dv = &' dx
in the first substitution. For the
second substitution, let ¥ = sin 2x
and dv = e* dx.

Some integrals require repeated use of the integration by parts formula.

EXAMPLE 4 Repeated Use of Integration by Parts

Find J X2 sin x dx.

Solution The factors x? and sin x are equally easy to integrate. However, the
derivative of x? becomes simpler, whereas the derivative of sin x does not. So, you
should let u = x2,

dy

sin x dx v=fsinxdx=—cosx
u = x2 du = 2x dx
Now, integration by parts produces

fxzsinxdx = —x2cosx + f2x cos x dx. irst u nt n by part

This first use of integration by parts has succeeded in simplifying the original integral,
but the integral on the right still doesn’t fit a basic integration rule. To evaluate that
integral, you can apply integration by parts again. This time, let u = 2x.

dv = cos x dx v=fcosxdx=sinx

u=2x du = 2 dx

Now, integration by parts produces

j2x cosxdx = 2xsinx — f 2 sin x dx Second use of integration by parts

=2xsinx + 2cosx + C.

Combining these two results, you can write

fxzsinxdx = —x%2cosx + 2xsinx + 2cosx + C.

When making repeated applications of integration by parts, you need to be careful
not to interchange the substitutions in successive applications. For instance, in
Example 4, the first substitution was u = x? and dv = sin x dx. If, in the second
application, you had switched the substitution to u = cos x and dv = 2x, you would
have obtained

fxz sinxdx = —x%cosx + focosxdx

= —x%2cosx + x2cosx + fxzsinxdx

= fxzsinxdx

thereby undoing the previous integration and returning to the original integral. When
making repeated applications of integration by parts, you should also watch for the
appearance of a constant multiple of the original integral. For instance, this occurs
when you use integration by parts to evaluate [ e*cos 2x dx, and also occurs in the
next example.



NOTE The integral in Example 5 is an
important one. In Section 8.4 (Example
5), you will see that it is used to find the
arc length of a parabolic segment.

STUDY TIP The trigonometric
identities

sin? x = 1 — cos2x
2

o 1 + cos 2x

costx = ————

play an important role in this chapter.

Figure 8.3
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EXAMPLE 5 Integration by Parts

Find J sec? x dx.

Solution The most complicated portion of the integrand that can be easily integrated
is sec? x, so you should let dv = sec? x dx and u = sec x.

dv = sec® x dx v=fsec2xdx=tanx

sec x tan x dx

U= secx du

Integration by parts produces

J udv =uv — fv du ;giiizlfon by parts
J sec® x dx = sec xtan x — f sec x tan? x dx Substitute.
f sec® x dx = sec x tan x — f sec x(sec?x — 1) dx Trigonometric identity
f sec®xdx = secxtanx — f sec® x dx + f sec x dx Rewrite.
2 f sec® x dx = sec xtan x + f sec x dx Collect like integrals.

Integrate and divide

1 1
fsec%cdx=Esecxtanx+§1n|secx+tanx|+C. by 2.

EXAMPLE 6 Finding a Centroid

A machine part is modeled by the region bounded by the graph of y = sin x and the
x-axis, 0 < x £ /2, as shown in Figure 8.3. Find the centroid of this region.

Solution Begin by finding the area of the region.
/2 /2
A=J’ sinxdx=[—cosx] =1
0 0

Now, you can find the coordinates of the centroid as follows.

T/2 . /2 o /2
i=%f Eln—x(sinx)dx=lf (1—cos2x)dx=l[x—8m2x] ==z
0 )

9 4 4 2 1o 8
You can evaluate the integral for X, (1/A) [o" /2 x sin x dx, with integration by parts. To
do this, let dv = sin x dx and u = x. This produces v = —cos x and du = dx, and you
can write

fxsinxdx = —xcosx + fcosxdx

= —xcosx + sinx + C.

Finally, you can determine X to be

1 /2 /2
X=—f xsinxdx=[—xcosx+sinx] = 1.
A )y 0

So, the centroid of the region is (1, 77/8). —
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STUDY TIP  You can use the acronym
LIATE as a guideline for choosing u in
integration by parts. In order, check the
integrand for the following.

Is there a Logarithmic part?

Is there an Inverse trigonometric part?
Is there an Algebraic part?

Is there a Trigonometric part?

Is there an Exponential part?

G

FOR FURTHER INFORMATION

For more information on the tabular
method, see the article “Tabular
Integration by Parts” by David Horowitz
in The College Mathematics Journal,
and the article “More on Tabular
Integration by Parts” by Leonard
Gillman in The College Mathematics
Journal. To view these articles, go to
the website www.matharticles.com.

As you gain experience in using integration by parts, your skill in determining u
and dv will increase. The following summary lists several common integrals with
suggestions for the choices of u and dv.

Summary of Common Integrals Using Integration by Parts

1. For integrals of the form
f x" e dx, f x" sin ax dx, or f x" cos ax dx

let u = x" and let dv = e dx, sin ax dx, or cos ax dx.
2. For integrals of the form

f x"In x dx, f x" arcsin ax dx, or f x" arctan ax dx

let u = In x, arcsin ax, or arctan ax and let dv = x" dx.
3. For integrals of the form

f e sin bx dx or f e cos bx dx

let u = sin bx or cos bx and let dv = e dx.

Tabular Method

In problems involving repeated applications of integration by parts, a tabular method,
illustrated in Example 7, can help to organize the work. This method works well for
integrals of the form [ x" sin ax dx, [ x” cos ax dx, and [ x" e** dx.

T EXAMPLE 7 Using the Tabular Method
L]
Find fxz sin 4x dx.

Solution  Begin as usual by letting u = x2 and dv = v’dx = sin 4x dx. Next, create
a table consisting of three columns, as shown.

Alternate u and Its v'and Its
Signs Derivatives Antiderivatives
+ x? sin 4x
- — U s Tt —icos4x
+ — 2 S . —1'—6 sin 4x
= 0 - & cos 4x

Differentiate until you obtain
0 as a derivative.

The solution is obtained by adding the signed products of the diagonal entries:

1
szsin4xdx = —%x2cos4x + lxsin4x + ﬁcos4x + C.

8 L |



Exercises for Section 8.2

In Exercises 1-4, match the antiderivative with the correct
integral. [Integrals are labeled (a), (b), (c), and (d).]

() [ xsinxdx
(d) [x2cosxdx

(@ [Inxdx
(c) [x2e*dx

1. y =sinx — xcosx

2. y=x%sinx + 2xcosx — 2sinx
3, y = x%* — 2xe* + 2e*

4, y=—x+xhx

In Exercises 5-10, identify u and dv for finding the integral
using integration by parts. (Do not evaluate the integral.)

5. J.\‘t‘.'e"l dx 6. jA‘z e dx
T f (In x)? dx 8. J In 3x dx

9. J xsec” xdx 10. J. cos x dx

In Exercises 11-36, find the integral. (Note: Solve by the
simplest method—not all require integration by parts.)

11. fxe‘z-‘ dx 12. %dx
I/r
13 f dx 14. —dt
15. fxzexgdx 16. fx“ In x dx
|
17. ftln(t + 1) dt 18. dex
2
19. f (n 2 20, fln—zxdx
x X
xe™ e
21, j BT A
23. f (2 — 1)e* dx 2, f lnxf"dx
25. f x/x — 1dx 26. f ﬁdx
27.fxcosxdx 28. fxsinxdx
29. fx3 sin x dx 30. fx2 cos x dx

31. |tcscrcottdt 32, | Osec Otan 6d6

35 e2* sin x dx 36. | e*cos2xdx

33. f arctan x dx 34. f 4 arccos x dx
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See www,CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 37-42, solve the differential equation.

37,y = xe* 38. y'=1Inx

e 0.2 = 2 i1
a /2 + 3t dx

x
2. y’ = arctan =
42. y arctan 7

39.

41. (cosy)y’ = 2x

Slope Fields In Exercises 43 and 44, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

43. d xJycosx, (0,4) 44,

d .
@ Ey = ¢*/3sin 2x, (0, _%)

y y

’

IR

s

R

F‘V Slope Fields In Exercises 45 and 46, use a computer algebra

system to graph the slope field for the differential equation and
graph the solution through the specified initial condition.

dy _ dy _x .
45, I 46. B sin x
y(0) =2 y(0) = 4

In Exercises 47-58, evaluate the definite integral. Use a graph-
ing utility to confirm your result.

4 1
47. fxe‘x/de 48. f X2 e* dx
0
49. xcosxdx 50. f x sin 2x dx
0

1
51. arccos x dx 52, J x arcsin x? dx
0

0

1
55, | x’Ilnxdx 56. f In(1 + x?) dx
0

57.

2
53. f e* sin x dx 54, f e ¥ cos x dx

/4
x arcsec x dx 58. f x sec? x dx
0
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In Exercises 59-64, use the tabular method to find the integral.

59, fxzez"dx 60. fx3e 2% dx

61. jx3 sin x dx 62. fx3 cos 2x dx

63. fxseczxdx 64. f x2(x — 2)3/2 gdx

In Exercises 65-70, find or evaluate the integral using substitu-
tion first, then using integration by parts.

65. f sinx dx 66. J 2x' cos a7 dx

68. f eVE dy
0

70. [lm’.\’2 + 1) elx

4
67. f x4 — xdx
0

69. fcos(ln x) dx

Writing About Concepts

71. Integration by parts is based on what differentiation rule?
Explain.

72. In your own words, state guidelines for integration by parts.

In Exercises 73-78, state whether you would use integration
by parts to evaluate the integral. If so, identify what you
would use for z and dv. Explain your reasoning.

73. f 1nTxdx 74. j xInxdx

75. f X2 iy 76. f?.l‘ e’ dx

7 f —F 78 f o
CISEFT IR

HV In Exercises 7982, use a computer algebra system to (a) find or

evaluate the integral and (b) graph two antiderivatives.
(¢c) Describe the relationship between the graphs of the
antiderivatives.

79. f Pe ¥ dr 80. f o’ sin o da

/2 5
81. f e~2*gin 3x dx 82. f x*(25 — x2)3/2 gy
0 0

83. Integrate f 2x~/2x — 3dx

(a) by parts, letting dv = /2x — 3 dx.
(b) by substitution, letting 4 = 2x — 3.

84. Integrate fx\/4 + xdx

(a) by parts, letting dv = /4 + x dx.
(b) by substitution, letting u = 4 + x.

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

x3
85. Integrate | ——=dx
g f V4 + 52
(a) by parts, letting dv = (x/\/4 + xz) dx.
(b) by substitution, letting u = 4 + x2.

86. Integrate fx\/4 — xdx

(a) by parts, letting dv = /4 — x dx.
(b) by substitution, letting u = 4 — x.

In Exercises 87 and 88, use a computer algebra system to find
the integral for n = 0, 1, 2, and 3. Use the result to obtain a
general rule for the integral for any positive integer n and test
your results for n = 4.

87. fx”lnxdx 88. fx”e"dx

In Exercises 89-94, use integration by parts to verify the for-
mula. (For Exercises 89-92, assume that  is a positive integer.)

89. jx"sinxdx = —x"cosx + an"*'cosxdx

90. fx”cosxdx=x”sinx— nfx”‘lsinxdx

(}’L_l)z[_l + (n+ 1)111)6] + C

npax
92, fx” ey =25 ﬂfx"*l e dx
a a

91. fx” Inxdx =

e*(a sin bx — b cos bx)
a + b?

e“*(a cos bx + b sin bx)
a’ + b?

93. fe‘”‘ sin bx dx = +C

94, Ie”“‘cos bxdx = + C

In Exercises 95-98, find the integral by using the appropriate
formula from Exercises 8994,

95, fx3 In x dx
96. f x? cos x dx
97. f e?* cos 3x dx

98. f x3e2x dx

HU Area In Exercises 99-102, use a graphing utility to graph the

region bounded by the graphs of the equations, and find the
area of the region.
9. y=xe%y=0,x=4
100. y = %xe"‘”,y =0, x=0,x=3
101, y=e*sinmx,y=0,x=0,x=1
102. y =xsinx,y =0,x=0,x=m



103. Area, Volume, and Centroid Given the region bounded by
the graphs of y = Inx, y = 0, and x = e, find
(a) the area of the region.

(b) the volume of the solid generated by revolving the region
about the x-axis.

(¢) the volume of the solid generated by revolving the region
about the y-axis.

(d) the centroid of the region.
104. Volume and Centroid Given the region bounded by the
graphs of y = xsinx, y = 0,x =0, and x = , find
(a) the volume of the solid generated by revolving the region
about the x-axis.

(b) the volume of the solid generated by revolving the region
about the y-axis.

(c) the centroid of the region.

105. Centroid Find the centroid of the region bounded by the
graphs of y = arcsinx, x =0, and y = /2. How is this
problem related to Example 6 in this section?

106. Centroid Find the centroid of the region bounded by the
graphs of f(x) = x%, g(x) = 2%, x = 2, and x = 4.

107. Average Displacement A damping force affects the
vibration of a spring so that the displacement of the spring is
given by y = e~* (cos 2t + 5sin 21). Find the average value
of y on the interval fromt = 0tot = 7.

108. Memory Model A model for the ability M of a child to
memorize, measured on a scale from 0 to 10, is given by
M=1+16tlnt, 0 <t <4, where ¢ is the child’s age in
years. Find the average value of this model

(a) between the child’s first and second birthdays.
(b) between the child’s third and fourth birthdays.

Present Value Tn Exercises 109 and 110, find the present value
P of a continuous income flow of ¢(¢) dollars per year if

4
P= f c(He " dt
0

where ¢, is the time in years and r is the annual interest rate
compounded continuously.

109. c(r) = 100,000 + 4000z, r = 5%, t; = 10

110. <(f) = 30,000 + 500¢, r = 1%, t, = 5

Integrals Used to Find Fourier Coefficients In Exercises 111
and 112, verify the value of the definite integral, where n is a
positive integer.

2
N 777- n is odd
111. j xsinnx dx =

—ar 2’77 R
~~2, niseven
n
112. j x2 cos nx dx = (;l)zﬂ
. n
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113. Vibrating String A string stretched between the two points
(0, 0) and (2, 0) is plucked by displacing the string A units at
its midpoint. The motion of the string is modeled by a Fourier
Sine Series whose coefficients are given by

1 2
bnzhj xsin”—”dx+hf (—x+2)sinﬂ’—27—xdx.
4] 1

2
Find b,
114. Find the failacy in the following argument that 0 = 1.
dv = dx v = jdx =X
1
U= du = —Lz dx
X X
dx 1 1 dx
+ === - -5 )Wd= -
0 J = (x>(x) j( x2>(x)dx 1 +J p
So,0 = 1.

115. Let y = f(x) be positive and strictly increasing on the interval
0 < a < x < b. Consider the region R bounded by the graphs
of y=f(x),y=0,x=a,andx = b. If Ris revolved about
the y-axis, show that the disk method and shell method yield
the same volume.

fdP' 116. Euler’s Method Consider the differential equation

F(x) = xe™* with the initial condition f(0) = O.

(a) Use integration to solve the differential equation.

(b) Use a graphing utility to graph the solution of the
differential equation.

(c) Use Euler’s Method with 7 = 0.05, and the recursive
capabilities of a graphing utility, to generate the first 80
points of the graph of the approximate solution. Use the
graphing utility to plot the points. Compare the result with
the graph in part (b).

(d) Repeat part (c) using h = 0.1 and generate the first 40
points.

(e) Why is the result in part (c) a better approximation of the
solution than the result in part (d)?

Vq:’ Euler’'s Method In Exercises 117 and 118, consider the

differential equation and repeat parts (a)—(d) of Exercise 116.

118. f(x) = cos/x
f0) =1

117. f/(x) = 3x sin(2x)
f0)=0

119. Think About It Give a geometric explanation to explain why

/2 /2
J xsinxdeJ x dx.
0 0

Verify the inequality by evaluating the integrals.

120. Finding a Pattern Find the area bounded by the graphs of
y = xsinx and y = 0 over each interval.
@ [0,7]  ®) [m2n] () [2m37]

Describe any patterns that you notice. What is the area
between the graphs of y = x sinx and y = 0 over the interval
[n, (n + 1)7], where n is any nonnegative integer? Explain.
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Trigonometric Integrals

* Solve trigonometric integrals involving powers of sine and cosine.
* Solve trigonometric integrals involving powers of secant and tangent.
* Solve trigonometric integrals involving sine-cosine products with different angles.

Integrals Involving Powers of Sine and Cosine
In this section you will study techniques for evaluating integrals of the form
SHEILA ScOTT MACINTYRE (1910-1960)

Sheila Scott Macintyre published her first f sin™ x cos™ x dx and f sec” x tan” x dx
paper on the asymptotic periods of integral

functions in 1935. She completed her doctor- where either m or n is a positive integer. To find antiderivatives for these forms, try to
ate work at Aberdeen University, where she break them into combinations of trigonometric integrals to which you can apply the
taught. In 1958 she accepted a visiting e R

h fellowship at the University of 5 . . g
g IR B De Chderilylo For instance, you can evaluate [sin’x cos x dx with the Power Rule by letting

Cincinnati. .
u = sin x. Then, du = cos x dx and you have
6 06
. u sin® x
'[51n5xcosxdx=fu5du=€+c= G +C

To break up [ sin™ x cos” x dx into forms to which you can apply the Power Rule,
use the following identities.

sin®x + cos? x = | Pythagorean identity
e 1 — cos 2x S
sm- x = 2—'~ Half-angle identity for sin? x
B 1 + cos 2x o
Cos“x = —5_— Half-angle identity for cos? x

Guidelines for Evaluating Integrals Involving Sine and Cosine

1. If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to
cosines. Then, expand and integrate.

Odd Convert to cosines  Save for du

Jsin’-‘*"' xYeos" xdy = J(sin-‘ x)fcos vsinx dy = J (1 = cos” x)* cos” x sin x dx
2. If the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors
to sines. Then, expand and integrate.

Odd Convert to sines Save for du

fsin‘" xeos® My de = | sin™ x(cos? x)* cos vdx = [sin'” a1 — sin® o) cos x el

3. If the powers of both the sine and cosine are even and nonnegative, make repeated use of the identities

. 1 — cos 2x 5 1 + cos2x
sin? x = _2‘ and cos“x = T

to convert the integrand to odd powers of the cosine. Then proceed as in guideline 2.



TECHNOLOGY  Use a computer
algebra system (o find the integral in
Example 1. You should obtain

fsin3 xcos* xdx =

1 2
—cos® x| =sin?x + = | + C.
cos x(7 sin x 35) C

Is this equivalent to the result obtained
in Example 1?7

-

08+
0.6
04

0.2-

The area of the region is approximately
0.239.
Figure 8.4
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EXAMPLE | Power of Sine Is Odd and Positive

Find f sin3 x cos* x dx.

Solution Because you expect to use the Power Rule with u = cos x, save one sine
factor to form du and convert the remaining sine factors to cosines.

J sind x cos? x dx = J’sinzx cos* x(sin x) dx Rewrite.
= J(l — cos? x) cos? x sin x dx Trigonometric identity
= J'(cos4 x — cos® x) sin x dx Multiply.
= jcos“ xsinxdx — jcos6 x sin x dx Rewrite.

= — J’cos4 x(—sin x) dx + fcos6 x(—sin x) dx

5 7
COS” X Cos’ x
= — +—+C Integrate.

5 7 ]

In Example 1, both of the powers m and n happened to be positive integers.
However, the same strategy will work as long as either m or n is odd and positive. For
instance, in the next example the power of the cosine is 3, but the power of the sine
o1
is —3.

'p EXAMPLE 2 Power of Cosine Is Odd and Positive

™3 cos? x
Evaluate f dx.

/6 ~/Sinx

Solution Because you expect to use the Power Rule with u = sin x, save one cosine
factor to form du and convert the remaining cosine factors to sines.

f"/?’cos%cd (™ cos? x cos x

oo Jsinx o e sinx
3 J"T” (1 — sin® x)(cos x)
~le  Jons

/3
= J [(sin x)~ /2 cos x — (sin x)*/2 cos x] dx
/6

_ [(Sin D2 (sin x)5/2]w/3

dx

dx

1/2 5/2  lws
1/2 5/2 /
=2 _\/__3_ _ Z _‘/__3 _ \/E o ﬁ
2 5\ 2 80
~ 0.239
Figure 8.4 shows the region whose area is represented by this integral. ——
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Bettmann/Corbis

JonN WaLLIS (1616-1703)

Wailis did much of his work in calculus prior
to Newton and Leibniz, and he influenced the
thinking of both of these men. Wallis is also

credited with introducing the present symbol
(o) for infinity.

EXAMPLE 3 Power of Cosine Is Even and Nonnegative
s
Find J‘cos4 x dx.

Solution  Because m and # are both even and nonnegative (m = 0), you can replace
cos*x by [(1 + cos 2x)/2]2.

2
fcos“xdxzf(%) dx
1  cos2x cos?2x
—f(4+T+ 7 )dx
1  cos2x 1{1 + cosdx

=%fdx+%f2cos2xdx+—1— 4 cos 4x dx
_3x

32

sin 2x  sin4x
==+ +

8 4 32 +c

Use a symbolic differentiation utility to verify this. Can you simplify the derivative to
obtain the original integrand? —

In Example 3, if you were to evaluate the definite integral from 0 to 7/2, you
would obtain

w/2 . . /2
3 2 sin 4
f cos4xdx=[—x+sm X s x}
0

8 4 32 Jo
=G—767+0+0)—(0+0+0)
=37

16°

Note that the only term that contributes to the solution is 3x/8. This observation is
generalized in the following formulas developed by John Wallis.

Wallis’s Formulas

1. If nis odd (n = 3), then

[[oesan- GEIG)

(=)
2. If nis even (n > 2), then
[[eesas= (IR (5)3)

These formulas are also valid if cos® x is replaced by sin” x. (You are asked to
prove both formulas in Exercise 104.)
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Integrals Involving Powers of Secant and Tangent

The following guidelines can help you evaluate integrals of the form

j sec” x tan” x dx.

Guidelines for Evaluating Integrals Involving Secant and Tangent

1. If the power of the secant is even and positive, save a secant-squared factor and convert the remaining fac-
tors to tangents. Then expand and integrate.

Even Convert to tangents Save for du

~ - — .
jsﬂg“’*’ xtan’ xdx = J-l‘.l.'il.’.‘t.'z o 1 an” x sec? x dy = JH + tanZx)F N an” x sec® x dx

2. If the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining factors
to secants. Then expand and integrate.

Odd Convert to secants  Save for du

jsec’” ytan® ! ydy = jscc‘”‘ I x(tan®x)* sec x tan x dx = Jsec"" ' x(sec?x — 1)secx tan x dx

3. If there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared
factor to a secant-squared factor, then expand and repeat if necessary.

Convert to secants
)
f tan” x dx = f tan" ~2 x(tan? x) dx = ftan”_2 x(sec?x — 1) dx

4. Tf the integral is of the form [sec™ x dx, where m is odd and positive, use integration by parts, as illustrated in
Example 5 in the preceding section.

5. If none of the first four guidelines applies, try converting to sines and cosines.

EXAMPLE 4 Power of Tangent Is Odd and Positive

Solution Because you expect to use the Power Rule with u = sec x, save a factor of
(sec x tan x) to form du and convert the remaining tangent factors to secants.

Jsec x

j o dx = | (sec x)~"/?tan® x dx
= f (sec x)~3/2(tan? x)(sec x tan x) dx
= f(sec x)~3/2(sec? x — 1)(sec x tan x) dx
= J[(sec x)1/2 — (sec x)~3/?](sec x tan x) dx

= %(sec x)3/% + 2(secx)” /2 + C
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NOTE TIn Example 5, the power of the
tangent is odd and positive. So, you
could also find the integral using the
procedure described in guideline 2 on
page 537. In Exercise 85, you are asked
to show that the results obtained by these
two procedures differ only by a constant.

y=tan*x

ooly -
B

The area of the region is approximately
0.119.
Figure 8.5

EXAMPLE 5 Power of Secant Is Even and Positive
e —————
Find f sec* 3x tan3 3x dx.

Solution Let u = tan 3x, then du = 3 sec?3x dx and you can write

I

f sec* 3x tan® 3x dx j see? 3n tan® 3xfsec? 3y) dx

[{I F1an® 3x) tan® 3x(sec? 3x) dx

I 2
;J‘{_l:m-t v 4 tan® 3x)(3 sec? 3x) dx
| (lnn" 3y tan® 3.1‘) .
= Semmn = g 8 T o

3 4 6

_ tan*3x 4 tan® 3x
12 18

EXAMPLE 6 Power of Tangent Is Even
e ———— e el

/4
Evaluate f tan* x dx.

0

Solution  Because there are no secant factors, you can begin by converting a tangent-
squared factor to a secant-squared factor.

[‘I.'m4 Xy

Il

[ tan? x(tan? x) dx
= ftanz x(sec’x — 1) dx
= fr.an2 xsectxdx — ftan2 xdx

= ftan%c sec?xdx — f(seczx — 1) dx

tan®
Z—qr—;—x—tanx-i-x-kC
You can evaluate the definite integral as follows.
/4 3 /4
tan
f tan* x dx = [ T2 tanx + x]
0 3 0
i,
4 3
=~ (0.119

The area represented by the definite integral is shown in Figure 8.5. Try using
Simpson’s Rule to approximate this integral. With n = 18, you should obtain an
approximation that is within 0.00001 of the actual value. ——
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For integrals involving powers of cotangents and cosecants, you can follow a
strategy similar to that used for powers of tangents and secants. Also, when integrat-
ing trigonometric functions, remember that it sometimes helps to convert the entire
integrand to powers of sines and cosines.

EXAMPLE 7 Converting to Sines and Cosines
S a0

) SeC X
Find j = dx
tan? x

Solution Because the first four guidelines on page 537 do not apply, try converting
the integrand to sines and cosines. In this case, you are able to integrate the resulting
powers of sine and cosine as follows.

' 1 s x\?
icz_x_ dx = f( )(@g ‘c) dx
tan® x cOs x/\sin x

= J(sin x)"%(cos x) dx

= —(sinx)"' + C

= —cscx + C E——

Integrals Involving Sine-Cosine Products with Different Angles

FOR FURTHER INFORMATION To Integrals involving the products of sines and cosines of two different angles occur in
learn more about integrals involving many applications. In such instances you can use the following product-to-sum
sine-cosine products with different identities.

angles, see the article “Integrals of
Products of Sine and Cosine with

Different Arguments” by Sherrie J. . . _1

sin mx sin nx = —(cos|(m — n)x] — cosilm + njx
Nicol in The College Mathematics 2( ¢ ] I( )
Journal. To view this article, go to 1
the website www.matharticles.com. sin mx cos nx = E(sin[(m — n)x] + sin[(m + n)x])

COS MX COS X = %(cos[(m — n)x] + cos[(m + n)x])

EXAMPLE 8 Using Product-to-Sum Identities
e ——
Find Jsin Sx cos 4x dx.

Solution Considering the second product-to-sum identity above, you can write

|
jsin S5xcosdxdx = l-(sin v+ sin 9x) oy

JEeC
,L( o8 x . )'\T) + C

9
cos ¥ cos Yy

=226
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Exercises for Section 8.3

In Exercises 1- 4, use differentiation to match the antiderivative
with the correct integral. [Integrals are labeled (a), (b), (¢,
and (d).]

(a) f sin x tan? x dx (b) 8 f cos* x dx

() f sin x sec? x dx (G)) f tan? x dx

1. y = secx
2. y=cosx + secx
3.y=x—tanx + jtan’ x

4. y =3x + 2sinxcos®x + 3 sin x cos x

In Exercises 5-18, find the integral.

5. J‘ cos® x sin ey 6. "cus‘ xsint xody
7. f:-‘in“ 2x cos 2x 8. [sin-‘ xdy
9. J’sin-" xcos® xdy 10. Jum X &
11. J.Cll.\i" 0 /sin 0 ¢t 12. L5 i et
Jeos i

13. f{'ﬂ.\'z 3x dx 14. J’sin: 2xilx

15. fsinz o cos” o dee 16. [Hiﬂ" 200

17. I xsin? xdy 18. f x? sin? x dx

In Exercises 19-24, use Wallis’s Formulas to evaluate the
integral.

/2 w/2
19. J' cos? x dx 20. f cos” x dx
0 0
/2 /2
21. f cos’ x dx 22, J. sin®x dx
0 0

/2 /2
23, f sin® x dx 24, f sin’ x dx
(1] 0

In Exercises 25—42, find the integral involving secant and tan-
gent.

25. J-sec 3x dx 26. fsecz 2x— 1)
27. fsec“ S5x dx 28. fsecﬁ 3x dx
29, f sec® mxdx 30. J‘ tan?x dx

31. J-tan5 X dx 32. ftan3 % sec2 X dx

Integration Techniques, L’ Hopital’s Rule, and Improper Integrals

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

sec? x tan x dx

35. f tan? x sec? x dx

i f sec® 4x tan 4x dx
J 40. flan-‘ 3xelx
2 il o
41. f L P 4. f i
sec x sec x

In Exercises 43— 46, solve the differential equation.

34, f tan® 2¢ sec? 2t dt

36. J-lans 2y sec” 2x dx
38. jsec* ; tan = dx

sec? x tan x dx

dr 4
43. d6— sin? 76

45. y’ = tan3 3x sec 3x

a4 _ .o L
44, da—sm 2cos >

46. y' = /tan x sec* x

H“" Slope Fields In Exercises 47 and 48, a differential equation, a

point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

dy dy 1
47. ~= = sin?x, (0,0 48. —~ = sec’xtanx, [0, ——
dx 0.0) dx 4
y Y
A ]
P | PSS e [l 7a154—=/ |11
g A = e A R A N
AR i |0 7rmd—e s [ 1|
P [l /e H ] |
R R e et R | S |
/——/;/;-- S S e i ': ) / o e ;:I :; I
PP g S N S gLy o 4 |
——t—pdg et s 51 B w3 B
4 == Pt =151 | /=—tp—ry/ 1.5
b [ /=gty (i
Y e | Wi /=== ] ]
P A A Yy || /=—+- 7 hd
< <t o s
) At |1 7s54—7 {11

Slope Fields In Exercises 49 and 50, use a computer algebra
system to graph the slope field for the differential equation, and
graph the solution through the specified initial condition.

3sinx

dy _3sinx . @ _ 2 _
49. - . , ¥(0) =2 50. 3y tan?x, y(0) = 3

In Exercises 51-54, find the integral.

51. fsin 3x cos 2x dx 52. fcos 46 cos(—36) do

53. fsin 6sin 3640 54. fsin(—4x) cos 3x dx



In Exercises 55—64, find the integral. Use a computer algebra
system to confirm your result.

55. fcot3 2x dx 56. Jtan“ % sect % dx
57. jcsc4 0do 58. Jcsc2 3x cot 3x dx
2 3
59. J SOt 4t 60. f SOl E s
csct csc t
Sy, R
61. J I 62. f——””' X — SOV T dx
sec x tan x cos X
I B Th
63. j(tan“t — sec* 1) dt 64. f—¢ dt
cost — |
In Exercises 65-72, evaluate the definite integral.
T /3
65. f sin? x dx 66. j tan? x dx
o )
/4 /4
67. f tan® x dx 68. j sec? t/tan t dt
0 0
™2 cost K
69. f —dt 70. f sin 36 cos6 d@
o 1 +sint e
/2 /2
71. j cos® x dx 72. f (sin?x + 1) dx
—a/2 —1/2

PF’ In Exercises 73-78, use a computer algebra system to find the
integral. Graph the antiderivatives for two different values of
the constant of integration.

73. J‘cos4 % dx 74. fsin2x cos? x dx
75. jsecS x dx 76. Jtan3(1 — x)dx
71. fsec5 rx tan mx dx 78. Jsec“(l — x) tan({l — x) dx

lc%" In Exercises 79—82, use a computer algebra system to evaluate
the definite integral.

/4 /2
79. f sin 26 sin 30 d0 80. f (1 — cos 6)*>d6
0 0

/2 12
81. f sin® x dx 82. f sin® x dx
0 (1]

 Writing About Concepts

83. In your own words, describe how you would integrate
[ sin™ x cos” x dx for each condition.

(a) m is positive and odd.
(b) n is positive and odd.

(c) m and n are both positive and even.

SECTION 8.3 Trigonometric Integrals 541

Writing About Concepts (continued)

84. In your own words, describe how you would integrate
[ sec™ x tan” x dx for each condition.

(a) m is positive and even.
(b) n is positive and odd.
(c) n is positive and even, and there are no secant factors.

(d) m is positive and odd, and there are no tangent factors.

PP In Exercises 85 and 86, (a) find the indefinite integral in two

different ways. (b) Use a graphing utility to graph the anti-
derivative (without the constant of integration) obtained by
each method to show that the results differ only by a constant.
(¢) Verify analytically that the results differ only by a constant.

85. f sec? 3x tan® 3x dx 86. fsec2 xtan x dx

Area In Exercises 87-90, find the area of the region bounded
by the graphs of the equations.

87. y=sinx, y=sin’x, x=0, x= /2

88. y=sin?@x, y=0, x=0, x=1

89. y = cos?x, y=sin’x, x=—m/4, x=7/4

90. y = cos’x, y = sinxcosx, x=—7/2, x=m/4

Volume In Exercises 91 and 92, find the volume of the solid
generated by revolving the region bounded by the graphs of the
equations about the x-axis.

91. y =tanx, y =0, —m/4 x=7/4

il

x:
X . X
cos~, y=sing, x= 0, x=m/2

92, vy 2

Volume and Centroid In Exercises 93 and 94, for the region
bounded by the graphs of the equations, find (a) the volume of
the solid formed by revolving the region about the x-axis and
(b) the centroid of the region.

93. y=sinx,y=0,x=0,x=m7

94, y=cosx,y=0,x=0,x = 7/2

In Exercises 95-98, use integration by parts to verify the
reduction formula.

. sin"“'xcosx n-—11].
95, Jsm"x dx = — + sin®~2x dx

n n

cos" Vxsinx n—1
96. jcos" xdx = + cos" 2 xdx
n n

cos lxsin’ ™' x
—_— +

97. |cos"xsin*xdx = —
m+n

n—1
m+n

Jcos’" xsin" %2 x dx

1 n—2
98. fsec”xdx = sect 2 x tan x + 1 Jsec”‘Zxdx
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In Exercises 99-102, use the results of Exercises 95-98 to find
the integral.

99, f sin® x dy

101. f sect 21” dx

100. fcos“ xdx

102. fsin“‘ X Cos? xdx
103. Modeling Data The table shows the normal maximum
(high) and minimum (low) temperatures (in degrees
Fahrenheit) for Erie, Pennsylvania for each month of the year.
(Source: NOAA)

Month | Jan | Feb | Mar | Apr | May | Jun

Max 335 | 354 | 447 | 556 | 674 | 76.2

Min 203 | 209 | 282 | 37.9 | 48.7 | 38.5

Month | Jul | Aug | Sep | Oct | Nov | Dec

Max 80.4 | 79.0 | 72.0 | 61.0 | 49.3 | 38.6

Min 637 | 62.7 | 559 | 455 | 36.4 | 26.8
: ~

The maximum and minimum temperatures can be modeled by

Tt Tt
1) = day + a,cos — + b, sin —
f() thy | 6 | 6

where r = 0 corresponds to January and ay, «,, and b, are as

follows.
1 12 ]
ay = D) ; Sy dt

[ :
@ =g ) S C()S%r(/f

I IZ, Tt
b, = 6£ (0 sin 6 dr

(a) Approximate the model H(r) for the maximum
temperatures. (Hinr: Use Simpson’s Rule to approximate
the integrals and use the January data twice.)

(b) Repeat purt (a) for a model L(r) for the minimum temper-
ature data.

(¢) Use a graphing utility to compare each model with the
actual data. During what part of the year is the difference
between the maximum and minimum temperatures
greatest?

104, Wallis’s Formulas  Use the result of Exercise 96 to prove the
following versions of Wallis's Formulas.

() Ifiris odd (n = 3), then

[ QIR

(b) If nis even {(n > 2), then

Y e 2 (1)(3)(2) L
A COS" X dx 9 4 6

I

Integration Techniques, L'Hopital’s Rule, and Improper Integrals

105. The inner product of two functions f and g on [a, b] is given
by (f. g) = f(/,’ F(x)g(x) dx. Two distinct tfunctions f and g are
said to be orthogonal if (f, g) = 0. Show that the following
set of functions is orthogonal on [— 7, 77].

{sin ., sin 2x, sin 3x, . . . , cos x, cos 2x,cos 3x, . . .}

106. Fourier Series 'The following sum is a finite Fourier series.

N
fl) = E a; sin ix

i=]

= a;sinx + a,sin 2x + aysin3x + - - - 4 g, sin Nx

(a) Use Exercise 105 to show that the nth coefficient a, is
1

given by a, = ‘f F{x) sin nx dx.
m —aT

(b) Let f(x) = x. Find a,, a,, and a;.

Section Project: Power Lines

Power lines are constructed by stringing wire between supports and

adjusting the tension on each span. The wire hangs between
supports in the shape of a catenary, as shown in the figure,

,//"K

0, 0) \

(=L/2.0) (L2, 0)

Let T be the tension (in pounds) on a span of wire, let u be the
density (in pounds per foot), let g =~ 32.2 be the acceleration due to
gravity (in feet per second per second), and let L be the distance (in
feet) between the supports. Then the equation of the catenary is

T ugx T
y=-— <cosh ‘f: . J), where x and y are measured in feet.
ug

(a) Find the length of the wire between two spans.

(b) To measure the tension in a span, power line workers use
the return wave method. The wire is struck at one support,
creating a wave in the line, and the time ¢ (in seconds) it takes
for the wave to make a round trip is measured. The velocity v
(in feet per second) is given by v = /T/u. How long does it
take the wave to make a round trip between supports?

-~

(¢) The sag s (in inches) can be obtained by evaluating y when
x = L/2 in the equation for the catenary (and multiplying by

2). In practice, however, power line workers use the “lineman’s
equation” given by s = 12,0752, Use the fact that

[cosh(ugL/2T) + 1] = 2 to derive this equation.

FOR FURTHER INFORMATION To learn more about the
mathematics of power lines, see the article “Constructing Power
Lines™ by Thomas O’Neil in The UMAP Journal.
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Trigonometric Substitution

e Use trigonometric substitution to solve an integral.
o Use integrals to model and solve real-life applications.

EXPLORATION Trigonometric Substitution

Now that you can evaluate integrals involving powers of trigonometric functions, you

Integrating a Radical Function d . i . . i X
can use trigonometric substitution to evaluate integrals involving the radicals

Up to this point in the text, you have

not evaluated the following integral. /2 _7, [a® + W2, and W -
|
j T— 2dx The objective with trigonometric substitution is to eliminate the radical in the
=) integrand. You do this with the Pythagorean identities

From geometry, you should be able to
find the exact value of this integral— cos26 =1 —sin?6, sec2f =1+ tan®f, and tan’6 =sec’f — L.
what is it? Using numerical integra-
tion, with Simpson’s Rule or the

X ; For example, if ¢ > 0, let u = a sin 6, where — m/2 < § < 7/2. Then
Trapezoidal Rule, you can’t be sure

of the accuracy of the approximation. JiE =2 = Ja? - a®sin? 6

7 I
Why? = Jd(1 — sin?0)
Try finding the exact value using the = Ja?cos?h

substitution
= acos 6.

¢ = sin / and dx = 0do.
R L Note that cos 6 = 0, because — /2 < 0 < 7/2.

Does your answer agree with the
value you obtained using geometry? i —

Trigonometric Substitution (a > 0)
1. For integrals involving Ja? — i let

u = asin 6.

Then a? — u? = a cos 0, where

—m/2 <0< 7/2
2. For integrals involving /a? + u?, let

= g tan 6.
Then a? + u?> = a sec 6, where
—m/2 < 0 < aw/2

3. For integrals involving S = a let

u = asec .

Vi -
Then u? — @ = *a tan 6, where
0<O<m/f2orm/2 <B<m
Use the positive value if u > a and
the negative value if u < —a.

NOTE  The restrictions on 8 ensure that the function that defines the substitution is one-to-one.
In fact, these are the same intervals over which the arcsine, arctangent, and arcsecant are defined.
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. X
sin 6 3,co

Figure 8.6

9 —
X

X

7

Integration Techniques, L'H6pital’s Rule, and Improper Integrals

EXAMPLE | Trigonometric Substitution: u = a sin
L]

o

29— x2

Solution  First, note that none of the basic integration rules applies. To use trigono-
metric substitution, you should observe that /9 — X2 is of the form /a2 — u2. So,
you can use the substitution

Find

x = asin 8 = 3 sin 6.
Using differentiation and the triangle shown in Figure 8.6, you obtain
dx = 3 cos 0d6, V9 — x2 = 3cos 6, and x% = 9sin? 6.

So, trigonometric substitution yields

dx _ 3 cos 8d6 -
/9 —x2 ) (9sin?6)(3 cos 6) e
_1f ds .
9) sin 0 Y
1 2 . o
= 9 csc? 8do Trigonometric identity
1
= - § cot@ + C Apply Cosecant Rule.
1/ /9 = 52
= ——<g> + C Substitute for cot 6.
9 x
_ D)
__i%;L+C
X

Note that the triangle in Figure 8.6 can be used to convert the s back to x’s as follows.
adj.

opp.

/9 — a2

X E———

cot § =

TECHNOLOGY Use a computer algebra system to find each definite integral.
dx

dx dx dx
NoEs fxm fxzm fxx/g——xz
Then use trigonometric substitution to duplicate the results obtained with the
computer algebra system.

In an earlier chapter, you saw how the inverse hyperbolic functions can be used
to evaluate the integrals
~ du _ du and du
Ju? + a? a? — u? uva* + u*
You can also evaluate these integrals using trigonometric substitution. This is shown
in the next example.



4x2 + 1

tan @ = 2x,sec 0 =
Figure 8.7

X

tan @ = x,sin 6 = —F———
Y+ 1

Figure 8.8
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EXAMPLE 2 Trigonometric Substitution: u = a tan 0

dx
F. d r—————————
. f JAxE + 1

Solution Letu = 2x,a = 1, and 2x = tan 6, as shown in Figure 8.7. Then,

dx = % sec20do and

Trigonometric substitution produces

1 dx = 1 [sec? 646
J4xz + 1 * 2 sec 0
= %fsec 6de

= %ln|sec 6+ tan 6| + C

T2

J4x2 + 1 = sec b.

= 1lnI\/4x2 +1+2x| +C.

Substitute.

Simplify.

Apply Secant Rule.

Back-substitute.

Try checking this result with a computer algebra system. Is the result given in this

form or in the form of an inverse hyperbolic function?

You can extend the use of trigonometric substitution to cover integrals involving
expressions such as (a? — u?)"/? by writing the expression as

(@ — w2 = (m)n.

; dx
Find J— TI)W'

—
=
[y

" EXAMPLE 3 Trigonometric Substitution: Rational Powers

Solution Begin by writing (x2 + 1)¥2 as (\/x2 + 1)3. Then, let @ = 1 and

u = x = tan 6, as shown in Figure 8.8. Using

dx = sec?0d8 and

dx _ dx
f o f (VT 1)
_ [sec?6d6
B f sec? 0
[ de
~ Jsec o

fcos 0de

sinf + C

Il

X2+

Jx2+ 1 =sech

you can apply trigonometric substitution as follows.

Rewrite denominator.

Substitute.

Simplify.

Trigonometric identity
Apply Cosine Rule.

Back-substitute.
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H" In Excrcises 55-58, use a computer algebra system to find the
integral. Verity the result by differentiation.

55. j L 56. f G2+ 20 + 11)3/2 dx

\r.\"l I‘_“ill +9

57. f—-. \-_ ~ ¢l 58. J’.X2\/J(_2“;—4_ dx

N S |

Writing About Concepts

59. State the substitution you would make if you used trigono-
melric substitution and the integral involving the given
radical, where a > 0. Explain your reasoning.

(@ Var—u? ) Jal+ 2 (€) Ju? — a?
60. State the method of integration you would use to perform

each integration. Explain why you chose that method. Do
not integrate.

(a) fx AT+ 1dx (b) f:(z\/.x'—z‘—ml— dx

61. Evaluate the integral fx ~~~~~ dx using (a) u-subslitution

and (b) trigonometric substilution. Discuss the results.

2
2 +9
x? = (2 + 9) — 9 and (b) using trigonometric substitution
Discuss the results.

62. Evaluate the integral f dx (a) algebraically using

True or False? TIn Exercises 63-66, deterinine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

63. 1f x = sin 6, then |~ = f do.
/2 |
64. If x = sec 6, then f Ealnll § dx = fscc 6tan 6 d0.
x
3

\/’ A3
65. If x = tan 0, then - dX, = cos 0.d6
T o (a2 ) NPT

/2

|
66. If x = sin 6, thenj 2T = x2dx = 2f sin? 6 cos? 6 d.
= 0

67. Area Find the area enclosed by the ellipse shown in the figure.

68. Area Find the area of the shaded region of the circle of radius
a, if the chord is /4 units (0 < h < a) from the center of the
circle (see figure).

),

69. Mechanical Design  The surface of a machine part is the
region between the graphs of y = |x| and x2 + (y — k)2 = 25
(see figure).

(a) Find k if the circle is tangent to the graph of y = |x|.
(b) Find the area of the surface of the machine part.

(c) Find the area of the surface of the machine part as a func-
tion of the radius r of the circle.

ﬁ" 70. Volumme The axis of a storage tank in the form of a right

circular cylinder is horizontal (see figure). The radius and
length of the tank are 1 meter and 3 meters, respectively.

f—

== n—

(a) Determine the volume of fluid in the tank as a function of
its depth d.

{b) Use a graphing utility to graph the function in part (a).

(¢) Design a dip stick for the tank with markings of i, %, and %.

(d) Fluid is entering the lank at a rate ofi cubic meter per
minute. Determine the rate of change of the depth of the
fluid as a function of its depth d.

{e) Use a graphing utility to graph the function in part (d).
When will the rate of change of the depth be minimun?
Does this agree with your intuition? Explain.



Volume of a Torus In Exercises 71 and 72, find the volume of
the torus generated by revolving the region bounded by the
graph of the circle about the y-axis.

71. (x — 3)? + y? = 1 (see figure)

Circle:
deten . (x=3P+y’=|

72. (x —h2 4+ =1 h>r

Arc Length  In Exercises 73 and 74, find the arc length of the
curve over the given interval.

[1,5]
[0, 4]

73. y=Inx,
74. y = %xz,

75. Arc Length  Show that the length of one arch of the sine curve
is equal to the length of one arch of the cosine curve.
76. Conjecture

(a) Find formulas for the distance between (0, 0) and (a, a?)
along the line between these points and along the parabola
y = x2

(b) Use the formulas from part (a) to find the distances for
a=1anda = 10.

(c) Make a conjecture about the difference between the two
distances as a increases.

P}" Projectile Motion 1In Exercises 77 and 78, (a) use a graphing

utility to graph the path of a projectile that follows the path
given by the graph of the equation, (b) determine the range
of the projectile, and (c) use the integration capabilities of a
graphing utility to determine the distance the projectile travels.

77. y = x — 0.005x?
¥2

78, y=x —
8. y=ux 7

Centroid In Exercises 79 and 80, find the centroid of the region
determined by the graphs of the inequalities.

79, y<3//x*+9,y>0,x2 -4 x<4
80. y < {24 (x — 42 +y2< 16,y 20

81. Surface Area Find the surface area of the solid generated by
revolving the region bounded by the graphs of y = x2, y = 0,
x =0, and x = /2 about the x-axis.

82.

83.

84.

85.

86.

87.
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Field Strength  The field strength H of a magnet of length 2L
on a particle r units from the center of the magnet is

2mL

H= (2 + L_z)s/z

where +m are the poles of the magnet (see figure). Find the

average field strength as the particle moves from 0 to R units
from the center by evaluating the integral

L2
RJ, (7 + 1"

+m

=2 2

—h

Figure for 82 Figure for 83

Fluid Force Find the fluid force on a circular observation
window of radius | foot in a vertical wall of a large water-filled
tank at a fish hatchery when the center of the window is (a) 3 feet
and (b) d feet (d > 1) below the water’s surface (see figure). Use
trigonomelric substitution to evaluate the one integral. (Recall
that in Section 7.7 in a similar problem, you evaluated one
integral by a geometric formula and the other by observing that
the integrand was odd.)

Fluid Force Evaluate the following lwo integrals, which
yield the fluid forces given in Example 6.

0.8
(a) Finsi(le = 48j (08 - y)(Z) vV 1 ;_5)_2 d)’
L

0.4
(b) Foulsi(le = 64j (04 - y)(z) V1= y2 dy
-1

Use trigonometric substitution to verify the integration formu-
las given in Theorem 8.2.

Arc Length  Show (hat the arc length of the graph of y = sin x
on the interval [0, 2] is equal to the circumference of the
ellipse x> + 2y? = 2 (see figure).

3 |
3
L
n
£
- |

|

Figure for 86 Figure for 87

Area of a Lune The crescent-shaped region bounded by two
circles forms a lune (see figure). Find the area of the lune given
that the radius of the smaller circle is 3 and the radius of the
larger circle is 5.
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2Vx*-5x+6

secf =2x— 5
Figure 8.13

Mary Evans Picture Library

Joun BernouLL) (1667-1748)

The method of partial fractions was intro-
duced by John Bernoulli, a Swiss mathemati-
cian who was instrumental in the early
development of calculus. John Bernoulli was
a professor at the University of Basel and
taught many outstanding students, the most
famous of whom was Leonhard Euler.

Partial Fractions

e Understand the concept of a partial fraction decomposition.

e Use partial fraction decomposition with linear factors to integrate rational functions.

 Use partial fraction decomposition with quadratic factors to integrate rational
functions.

Partial Fractions

This section examines a procedure for decomposing a rational function into simpler
rational functions to which you can apply the basic integration formulas. This
procedure is called the method of partial fractions. To see the benefit of the method
of partial fractions, consider the integral

!
Jgﬁ—m+6”'

To evaluate this integral without partial fractions, you can complete the square and use
trigonometric substitution (see Figure 8.13) to obtain

f 1 dr :f dx

X —5x+ 6 (x —5/2)2 — (1/2)2
B f (1/2) sec Htan 6d0
B (1/4) tan? @

dx %sec O tan 0 d6

= 2fcsc 6de

= 21Infcsc 6 — cot 6] + C
2x-5 1
2V =5x+6 2/ ~5x+6
x—3
JaP—=5x+6
Vx—3
V=2
x—3
x—2
=In|lx — 3| — InJx — 2| + C.

=2In +C

=2In ’+C

=2In + C

=In

+c

Now, suppose you had observed that

(S U
2—5%4+6 x—-3 x-—-2

Partial fraction decomposition

Then you could evaluate the integral easily, as follows.

1 1 1
fx2—5x+6dx_f<x—3_x—2>dx

=Inlx = 3| —Injx — 2|+ C

This method is clearly preferable to trigonometric substitution. However, its use
depends on the ability to factor the denominator, x> — 5x + 6, and to find the partial
fractions

1 1

P and _x—2'

In this section, you will study techniques for finding partial fraction decompositions.



STUDY TIP In precalculus you learned
how to combine functions such as
1 0= 1 5
x—2 x+3 (xF—-2x+3)

The method of partial fractions shows
you how to reverse this process.

5 _r
x—2)x+3) x—2 x+3
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Recall from algebra that every polynomial with real coefficients can be factored
into linear and irreducible quadratic factors.* For instance, the polynomial

¥Hxt—x-1
can be written as

NB+xt—x—1=x*Gx+1) —-Kx+1)
x*—Dx+1)
=2+ DE2-Dx+1)
=2+ D+ Dx— Dx+1)
=0 - D+ 1)2x2+1)

where (x — 1) is a linear factor, (x + 1)?is a repeated linear factor, and (x> + 1) is an
irreducible quadratic factor. Using this factorization, you can write the partial fraction
decomposition of the rational expression

N(x)
B o =g =1
where N(x) is a polynomial of degree less than 5, as follows.

N(x) A B C Dx + E

+ +
x—Dx+12x2+1) x—-1 x+1 (x+12 x2+1

Decomposition of N(x)/D(x) into Partial Fractions

1. Divide if improper: If N(x)/D(x) is an improper fraction (that is, if the
degree of the numerator is greater than or equal to the degree of the denomi-
nator), divide the denominator into the numerator to obtain

% = (a polynomial) + ]E((xx))

where the degree of N,(x) is less than the degree of D(x). Then apply Steps 2,
3, and 4 to the proper rational expression N, (x)/D(x).

2. Factor denominator: Completely factor the denominator into factors of the
form

(px + g and (ax? + bx + o)

where ax? + bx + c is irreducible.

3. Linear factors: For each factor of the form (px + ¢)”, the partial fraction
decomposition must include the following sum of m fractions.

AI + A?. + + Am
(px+4q)  (px + g7 (px + gm

4. Quadratic factors: For each factor of the form (ax? + bx + ¢)", the partial
fraction decomposition must include the following sum of » fractions.

Bx + C Byx + C, + Bx+ C,
ax?+ bx + ¢ (ax®> + bx + ¢)? (ax? + bx + o)

——

* For a review of factorization techniques, see Precalculus, 6th edition, by Larson and Hostetler
or Precalculus: A Graphing Approach, 4th edition, by Larson, Hostetler, and Edwards (Boston,
Massachusetts: Houghton Mifflin, 2004 and 2005, respectively).



558

CHAPTER 8

Integration Techniques, L'Hopital’s Rule, and Improper Integrals

When integrating rational expressions, keep in mind that for improper rational
expressions such as

Nx) 233+ x> = Tx+7

D(x) X2 +x—2

you must first divide to obtain
N(x) —2x+5
=2 -+
D(x) 25— x24+x—2

The proper rational expression is then decomposed into its partial fractions by the
usual methods. Here are some guidelines for solving the basic equation that is
obtained in a partial fraction decomposition.

Guidelines for Solving the Basic Equation

Linear Factors

1. Substitute the roots of the distinct linear factors into the basic equation.

2. For repeated linear factors, use the coefficients determined in guideline 1 to
rewrite the basic equation. Then substitute other convenient values of x and
solve for the remaining coefficients.

Quadratic Factors

1. Expand the basic equation.
2. Collect terms according to powers of x.

3. Equate the coefficients of like powers to obtain a system of linear equations
involving A, B, C, and so on.

4. Solve the system of linear equations.

Before concluding this section, here are a few things you should remember. First,
it is not necessary to use the partial fractions technique on all rational functions. For
instance, the following integral is evaluated more easily by the Log Rule.

x2+1 1 3x2 + 3
fx3+3x—4dx—3_fx3+3x—4dx
=%1n|x3+3x—4|+C

Second, if the integrand is not in reduced form, reducing it may eliminate the need for
partial fractions, as shown in the following integral.

fo—x—Z dx:f (x + D{x — 2) e
x3—2x— 4 (x —2)(x* + 2x + 2)

_ % 1 )
h f 242+ 2 &

= %ln|,1‘:’- +2% 4+ 2| =€

Finally, partial fractions can be used with some quotients involving transcendental
functions. For instance, the substitution u = sin x allows you to write

cos x J o - ,
o . nda— [ e = sinx, dit = cor
sin x(sinx — 1) u(u — 1) u = sinx, du = cos x dx
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 1-6, write the form of the partial fraction decom-
position of the rational expression. Do not solve for the

constants.
5 4x2 + 3
L. = 10x e (x — 5)°
3 S 3 x—2
T+ 0k x2+4x+3
16 2x — 1
S x2 — 10x 6 x(x2 + 1)?

In Exercises 7-28, use partial fractions to find the integral.

| 1
7'fx2—1 8.f42_9dx

3 X+
9'fx2+x—2dx lo'ft~+4\+3!

<= dx

S=% . fS.t-—llt_—IE
',3 - X | 3
T

13. o+ x

2412+ 12 f

x> — 4x

15.

."‘ o 4__-2 — Is‘_- : X
2 v v+ 5 J s

dv 16. .‘_2 — v

¥ =) 2x—3
——dx 18. f(x— 2 dx

J

J

J

e |

j _\"“‘7‘—4 P 50, f A
J

J

J

17.

L = =

e =1 2. f O

dx 24, | ———=

21.

23.

X2 — 4y +
25, | ———ar 26. j:ﬂ‘%dx
xtx 43

27. AR 9

x24+5
x3_—x2+x+3dx ZS'J

In Exercises 29-32, evaluate the definite integral. Use a graph-
ing utility to verify your result.

29 3 . 30 Txol
Ty 2+ sy +2“ )+ 1)

: |
31. f i IS 32. f
(I 0

W + 1)
H" In Exercises 33-40, use a computer algebra system to
determine the antiderivative that passes through the given
point. Use the system to graph the resulting antiderivative.

x2—x
x2+x+1

3x ox* + |
33' f 2 6x + 9 dx’ (4’ O) 34 j (,\' = l) l‘)r.\. (2. ”
x2+x+2 e
° 1 5 — X, 3
B | oy ap 0,1) 36 f(.:;—’ —pd (34

3. f PB4 (310)
38. f X - 6%\; 192)x g4 32
39, f ﬁdx, 6,4)

40. f x;‘j;(’jr;z_ldx, 2, 6)

In Exercises 41-46, use substitution to find the integral.

sin x sin x
41, | ————— 2, | =i ——0ax
j cos x(cosx — 1) e ) j cos x + cos?x A

3cosx
43, | ———— 7= ) —— ==
= jsin2x+sinx—2dx 44 jtanx(tanx+ 1)

5 f - D+ H“ 46; f @ + 1)

In Exercises 47—50, use the method of partial fractions to verify
the integration formula.

sec? x

" _—1) dx

1 1 x
47°fx(a+bx)dx_alna+b‘+c
1 1 a+x
48. jaz_xzdx—zalna + C

X 1 a
49, fmdx=b—(a+b +ln|a+bx|) + C
1

1 b
So'fxz(aﬂ—bx)dx— Tax a? g

H*’ Slope Fields 1In Exercises 51 and 52, use a computer algebra
system to graph the slope field for the differential equation and
graph the solution through the given initial condition.

X
a + bx

2 +c

51 dy _ 6 dy _ 4
dx 4 —x2 “dx x2—2x—3
y(0) =3 v0) =

Writing About Concepts

3
53. What is the first step when integrating f p x_

5 dx? Explain.

54, Describe the decomposition of the proper rational function
N(x)/D(x) (a) if D(x) = (px + q)", and (b) if D(x) =
(ax? + bx + ¢)", where ax? + bx + ¢ is irreducible.
Explain why you chose that method.

55, State the method you would use to evaluate each integral.

Explain why you chose that method. Do not integrate.

(a)f x+1 e (b)f Tx + 4

2+ 2x — 2+ 2x
© jx2+2x+5dx
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. E I' -
EXPLORATION EXAMPL Integration by Tables

Use the tables of integrals in' : ° " Find dx
Appendix B and the substitution - n dr—1

4t i Solution Because the expression inside the radical is linear, you should consider
to evaluate the integral in Example 1. forms involving /a + bu.
If you do this, you should obtain

: s : f du Z arctan 2 dbu +C Formula 17 (a < 0)
e U AR & A N 7y gt I Sy ———— ormula aqa <
. dx _ _ [ 2du uva+bu V—a —a
xx—1  Ju?+1
: ] Uyt : Leta = —1,b =1, and u = x. Then du = dx, and you can write

Does this ‘pr‘odrucc the same result as
that obtained in Example 1?

f%=2arctan\/;——l+ C.

Gwi D EXAMPLE 2 Integration by Tables
Find fx\/x4 — 9dx.

Solution Because the radical has the form u® — a2, you should consider
Formula 26.

fmdu lum=a - e+ E=E) +
Let u = x? and a = 3. Then du = 2x dx, and you have
fx\/x4 —9dx = %f V&2 = 32 (2x) dx

= i(xzm —9ln|x + /x" = 9|) + C.

EXAMPLE 3 Integration by Tables

. x
F1ndf1 g dx.

Solution Of the forms involving e, consider the following formula.

du
= —_ + e
f il In(1 +¢) +C Formula 84

Let u = —x2 Then du = —2x dx, and you have

X I — [ —2xdx
E 2/ 1+e 7

= —;I; [-x2 —In(1 + e)] + C

=202 +In(1 + e + C.

TECHNOLOGY Example 3 shows the importance of having several solution
techniques at your disposal. This integral is not difficult to solve with a table, but
when it was entered into a well-known computer algebra system, the utility was
unable to find the antiderivative.
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Reduction Formulas

Several of the integrals in the integration tables have the form [ f(x) dx = glx) +
{ h(x) dx. Such integration formulas are called reduction formulas because they
reduce a given integral to the sum of a function and a simpler integral.

EXAMPLE 4 Using a Reduction Formula

Find f x3 sin x dx.

Solution Consider the following three formulas.

f usinudu =sinu —ucosu + C Formula 52
f u'sinudu = —u'cosu +n f u" lcosudu Formula 54
f utcosuduy = u*sinu — n fu”‘l sin u du Formula 55

Using Formula 54, Formula 55, and then Formula 52 produces

fx3 sinxdx = —x3cosx + 3 foCosxdx
TECHNOLOGY Sometimes

when you use computer algebra systems = —x3cosx + 3 <x2 sinx — 2 j X sinx dx)
you obtain results that look very differ-
ent, but are actually equivalent. Here is = —x3cosx + 3x2sinx + 6xcosx — 6sinx + C.

how several different systems evaluated
the integral in Example 5.

EXAMPLE 5 Using a Reduction Formula
T ——————C

Maple _
V35— Find f ___\,32;5x dx
V3 arctanh(%\/3 = Sx\/_S_)
Derive Solution Consider the following two formulas.
: dit \/ a+bu— Ja
3—5x) - V3 e +C Formula 17 0
J3n ~—(7\/1g i T J' i ./u + bu \/_ Ja+ bu+ \/— il o
‘ Jva+ bu
JB—5% J = du=2~a+ bu-+a u\/a — Formula 19
Mathematica Using Formula 19, witha = 3,b = =5, and u = x, produces
Sqrt[3 — 5x] — /3 —
e Sqrt[3 — 5] f S (2 3_5x+3f \/3—5
Sqri[3] ArcTanh| 2or — 2% i
Sqri[3] - J’
= J3=Sxt+z ——.
Mathcad 2) xJ3—5x
V3= 5x + Using Formula 17, witha = 3, b = —5,and u = x, produces
6+5x+2 = .
zfl[ o6+ 54233 ")] J” R | R =31\ ¢
\/ Sx + f
Notice that computer algebra systems \/3__T g S e 1 v e e ‘/_ + C.

do not include a constant of integration. Y 3 . 5 + \/_ e——
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Rational Functions of Sine and Cosine

EXAMPLE 6 Integration by Tables
R

sin 2x
Fi —_—
1ndf2 + cosxdx

Solution  Substituting 2 sin x cos x for sin 2x produces
sin 2x sin x cos x
ST o —dx=2| ——4d
f2+cosxx fZ-I—cosxx
A check of the forms involving sin u or cos  in Appendix B shows that none of those
listed applies. So, you can consider forms involving a + bu. For example,

u du 1
= — - + + C.
fa on 2 (bu — alnla + bu|) + C Formula 3
Leta=2,b=1,and u = cos x. Then du = —sin x dx, and you have
, | Snxcosx -, cos x(—sin x dx )
2+ cosx 2 + cosx
= —2(cosx — 2|2 + cos x|) + C
= —2cosx + 41In|2 + cosx| + C. —

Example 6 involves a rational expression of sin x and cos x. If you are unable to
find an integral of this form in the integration tables, try using the following special
substitution to convert the trigonometric expression to a standard rational expression.

l

Substitution for Rational Functions of Sine and Cosine

For integrals involving rational functions of sine and cosine, the substitution
sin x tan ¥
u=————— = ey
1+ cosx 2
yields
cos L-w sin x 2u nd d 2 du
x = | =—, a X = .
1+ u? 1+ u? 1+ u?

Proof From the substitution for u, it follows that

) sin? x 1 — cos?x 1 — cosx
H: = — = RV T ——
(1 +cosx)* (1 +cosx)2 1+cosx

Solving for cosx produces cosx = (1 — u?)/(1 + u?). To find sinx, write
u = sinx/(1 + cos x) as

1- u2> 2u

0 — + = = .
sinx = u(1 + cos x) u<1+1+u2 I+ .2

Finally, to find dx, consider u = tan(x/2). Then you have arctanu = x/2 and
dx = (2du)/(1 + u?). P
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Exercises for Section 8.6

In Exercises 1 and 2, use a table of integrals with forms involving
a + bu to find the integral.

x? 2
L J 1+ xdx & J’ 322y — 57 -

In Exercises 3 and 4, use a table of integrals with forms involving
Ju? + a? to find the integral.

3. je"dl + e dx

2 _
4. f——”‘SX 2 ix

In Exercises 5 and 6, use a table of integrals with forms involving
Ja? — u? to find the integral.

1 X
5 | ——=dx 6. | ———=dx
sz\/l—xz J-\/9—x4

In Exercises 7-10, use a table of integrals with forms involving
the trigonometric functions to find the integral.

cos? Ux
= 5 dx

1 |
k —d . | ——————dx
? f/}(l — cos~/x) * 0 J | — tan 5x 6

7. jsin“ 2x dx

In Exercises 11 and 12, use a table of integrals with forms
involving e* to find the integral.

1
11. f Trea®

In Exercises 13 and 14, use a table of integrals with forms
involving In u to find the integral.

12. j e~*/2 sin 2x dx

13. f x3*Inxdx 14. J(ln x) dx

In Exercises 15-18, find the indefinite integral (a) using
integration tables and (b) using the given method.

Integral Method

15. sz e dx Integration by parts

16. j x*lnxdx Integration by parts

i

17. fo(x+ s
1

18. Jx2_75dx

In Exercises 19—42, use integration tables to find the integral.

Partial fractions

Partial fractions

19. fx arcsec(x? + 1) dx 20. f arcsec 2x dx

Integration by Tables and Other Integration Techniques 565

See www.CalcChat,com for worked-out solutions to odd-numbered exercises

| 1
21. J.ﬂi\"" = Ezh 22. sz T 2x 2 dx
2x o?
. {1 — 3P e 24. J T—sinf?’
25. J e* arccos ¢ dx 26. J — & _ux
| — tane*
x 1
. S I— V.1 . —————=dt
27 J I — sec x? @ 28 jr[l + (In 1)?]

cos _
| T Lo ein g+ sind 0 .| A202 4 Ox2dx
» j3 Tasnes awas J‘ X dx

31. j—l_ iy 32. j Jx aretan XM dx

———ig
x2J2 + 9x?

In x e
. e L s f .
33 f}‘.(.’: + 2 1nx) dx 3 J“ — 22 G

X
. —————————x
35 J(_\-; T e

36. J(?.x - 322y — 3)* + 4dx

X cos X
37, | —— - dx 38 | ———
j g7 5 v Jsin?x + 1

X3 3—x
39, j—Ji__j:dx 40, J,/3+xdx
e

$dx 42, J‘tan-1 0do

41. 0 +e

In Exercises 43-50, use integration tables to evaluate the
integral.

1 3
x
43. 2 dx 44. ——dx
J;) . J; J1+x

3 ™
45. f x%In x dx 46. j X sin x dx
1 0

/2 4 =)
COS X a2
: E—— o : ———=dx
4l J:#/z 1+ sinzxdx s J; (3x — 57 o
/2 1
49, J B costdt 50. J J3+ xtdx
0 0

In Exercises 51-56, verify the integration formula.

u? | e
o —du = {bu— _ 2anla + bul | +
J’ (a + bu)? L b3 (m a + bu alna h”l) ¢

" )

u B !
. i ! = |y + .Ir — N o ]r
. a + bu o \Zn+ I”’Q{ ariem Ja+ bu ‘ u)

5

[

+u

53 —1——d = _=——
* ) (R + a?)P? “= LN
54. fu"cosudu =y'sinu — nju”‘1 sin u du

+C

55. jarctan udu = uarctanu — In/1 + 2+ C
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L’Hépital’s Rule
To find the limit illustrated in Figure 8.14, you can use a theorem called L’Hépital’s

Rule. This theorem states that under certain conditions the limit of the quotient
J(x)/g(x) is determined by the limit of the quotient of the derivatives

AE))

g'(x)
To prove this theorem, you can use a more general result called the Extended Mean
Value Theorem.

‘ THEOREM 8.3 The Extended Mean Value Theorem ‘

‘ If f and g are differentiable on an open interval (a, b) and continuous on [a, b]
‘ such that g'(x) # 0 for any x in (a, b), then there exists a point ¢ in {(a, b) such ‘
that

fle) _ fb) — fla)
| g'lc) &) — gla)y \

NOTE To see why this is called the Extended Mean Value Theorem, consider the special case
in which g(x) = x. For this case, you obtain the “standard” Mean Value Theorem as presented
in Section 3.2.

The Extended Mean Value Theorem and L’Hépital’s Rule are both proved in
Appendix A,

| Let f and ¢ be functions that are differentiable on an open interval {a, b) con-

| taining ¢, except possibly at ¢ itself. Assume that g'(x) # 0 for all x in (q, b),
except possibly at c itself. If the limit of f(x)/g(x) as x approaches c produces

| the indeterminate form 0/0, then |

I ) B 4 0\
Ll |

= o |
THEOREM 8.4 L’Hépital’s Rule ‘

provided the limit on the right exists (or is infinite). This result also applies if |
the limit of f(x)/g(x) as x approaches ¢ produces any one of the indeterminate
forms co/co, (—00)/00, 00 /(—0), or (—o0)/(~o0).

- ]

NOTE People occasionally use L' Hépital’s Rule incorrectly by applying the Quotient Rule to
(x)/g(x). Be sure you see that the rule involves Fx)/g(x), not the derivative of S(x)/g(x).

L’Hopital’s Rule can also be applied to one-sided limits, For instance, if the limit
f f(x)/g(x) as x approaches ¢ from the right produces the indeterminate form
)/0, then

tim £ = iy L)

x—ct g(x x—c* g'(x)

rovided the limit exists (or is infinite).

ises 81 and 82, determine whether the
- If it is false, explain why or give an
alse.

als, the integral you are evaluating must

integrals, you may have to make substi-
integral in the form in which it appears

sinder on an industrial machine pushes a
fxfeet (0 < x < 5), where the variable
= 2000xe™* pounds. Find the work done
e full 5 feet through the machine.

500
¢ 83, using F(x) = \/Z—TX_Z pounds.
—x

> cross section of a precast concrete
oounded by the graphs of the equations

=2

T—z,y=0,and_y=3
y

sured in feet. The length of the beam is
Find the volume V and the weight W of
concrete weighs 148 pounds per cubic
centroid of a cross section of the beam.,

y

220 ft

——t —

I 2 3

‘ion is growing according to the logistic
5 Where ¢ is the time in days. Find the

x the interval [0, 2].

se a graphing utility to (a) solve the
constant k and (b) graph the region
integral.

k
88. f 6x2e V2 dx = 50
0

Exam Challenge

Committee on the Putnam Prize Compelition.
America, All rights reserved.




TECHNOLOGY  Numerical
and Graphical Approaches Use a

" numerical or a graphical approach to
approximate each limit.

-1
a. lim
x—0 X
251 .
b. lim3 =L
x—0 X
41
¢. lim
x—0 X
2
d. lim 2 -
x—0 P

What pattern do you observe? Does an
analytic approach have an advantage
for these limits? If so, explain your
reasoning.

NOTE Try graphing y, = Inx and

y, = x in the same viewing window.
Which function grows faster as x
approaches co? How is this observation
related to Example 2?

SECTION 8.7 Indeterminate Forms and L’Hopital’s Rule 569

EXAMPLE | Indeterminate Form 0/0

e —1

Evaluate lim
x—0 X

Solution Because direct substitution results in the indeterminate form 0 /0
lim (e —1)=0
—7 x=0

¥ —1
lim -
a—l) X -

" limx =0
x—0

you can apply L’Hopital’s Rule as shown below.

d
2x
) —le* — 1
e —1 . dx[ ]
lim—— = lim ———— Apply L’ Hbpital’s Rule.
x—0 X x—0 d [ ]
— X
dx
282)(
= lim Differentiate numerator and denominator.
-0 1
=2 Evaluate the limit. —

NOTE In writing the string of equations in Example |, you actually do not know that the first
limit is equal to the second until you have shown that the second limit exists. In other words, if
the second limit had not existed, it would riot have been permissible to apply L'Hopital’s Rule.

Another form of L’Hbpital’s Rule states that if the limit of flx)/g(x) as x
approaches oo (or —oo) produces the indeterminate form 0/0 or oo/oo, then

S )
,\ll)ngo glx) x1—>nolo gx)

provided the limit on the right exists.

EXAMPLE 2 Indeterminate Form oo/oo
Evaluate |im M
x—=c0 X

Solution Because direct substitution results in the indeterminate form oo/co, you
can apply L' Hopital’s Rule to obtain

d
—[Inx]
. Inx . dx )
lim — = lim ——— Apply L'Hépital’s Rule.
x—oo X Ao d [ ]
— X
dx
= lim — Differentiate numerator and denominator.
x—00 X
= 0. Evaluate the limit. —
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Occasionally it is necessary to apply L’Hopital’s Rule more than once to remove
an indeterminate form, as shown in Example 3.

EXAMPLE 3 Applying L’Hépital’s Rule More Than Once

2]

Evaluate 1jm .
x——owe

Solution Because direct substitution results in the indeterminate form co/oo, you
can apply I’Hépital’s Rule.

d 2
) e ) dx [x?] i 2x
lim —= lim ——— = lim =
v—s-—co e v x> —o0 _d_[e__\_] - —e ¥
dx

This limit yields the indeterminate form (—o0)/(—c0), so you can apply L'Hopital’s
Rule again to obtain

d
. X ) E[Zx] .
lim —— = lim ———= |im = =.
x——co —g ¥ xX—>—o0 i[_eﬁ\‘] - e
d.x r——

In addition to the forms 0/0 and co/oo, there are other indeterminate forms such
as 0 + 00, 1°, 00°, 0%, and oo — co. For example, consider the following four limits
that lead to the indeterminate form 0 « oo.

. 1 . 2 ) 1 i 1
lim (x)(—) lim (x)(-), lim (x)(—,), lim (e‘)(—)
=0 X =0 X Yoo e’ x—00 X
| — ] — — SR
Limitis 1. Limit is 2. Limit is 0. Limit i
Because each limit is different, it is clear that the form 0 - oo is indeterminate in the
sense that it does not determine the value (or even the existence) of the limit. The fol-
lowing examples indicate methods for evaluating these forms. Basically, you attempt
to convert each of these forms to 0/0 or co/co so that L’Hépital’s Rule can be applied.

EXAMPLE 4 Indeterminate Form 0 - oo
. "

Evaluate }jy o+ /y.

X—co

Solution  Because direct substitution produces the indeterminate form 0 - oo, you
should try to rewrite the limit to fit the form 0/0 or co/oo. In this case, you can rewrite
the limit to fit the second form.

lim e=*/x = lim ﬁ

x—00 x—oo et

Now, by L’Hépital’s Rule, you have

limﬁz ]imMz lim ! = 0.

r—>o0 e" x—00 e’ 00 2\/)_C er S———



A

The limit of [1 + (1/x)]" as x approaches
infinity is e.
Figure 8.15
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If rewriting a limit in one of the forms 0/0 or co/co does not seem to work, try

the other form. For instance, in Example 4 you can write the limit as
X e "

lim e’x\/} = lim -y

X0 x—oco X
which yields the indeterminate form 0 /0. As it happens, applying L’Hopital’s Rule to
this limit produces

e—X — e—x

lim — = lim —— =7

xLoo x 1/2 xLoo — 1/(2x3/2)
which also yields the indeterminate form 0/0.

The indeterminate forms 1%°, 0o, and 0° arise from limits of functions that have
variable bases and variable exponents. When you previously encountered this type of
function, you used logarithmic differentiation to find the derivative. You can use a
similar procedure when taking limits, as shown in the next example.

EXAMPLE 5 Indeterminate Form |«

Evaluate lim (] + ]—> .

¥-—>co X

Solution Because direct substitution yields the indeterminate form 1°°, you can
proceed as follows. To begin, assume that the limit exists and is equal to y.

} 1)*
y_x1i>n;<1 +X>

Taking the natural Jogarithm of each side produces

Iny= ln[ lim (1 + 1)]
=00 X |

Because the natural logarithmic function is continuous, you can write

Iny = lim [x ln<1 + l)]
x—00 X

. (ln[l + (1 /x)]>

Indeterminate form co * 0

Indeterminate form 0/0

X—00 ] / X
= _li_)m (—tl/ﬂ%@%{l/ x]—“) L’Hopital’s Rule
— 1
TS+ (/%)
= 1.

Now, because you have shown that Iny = 1, you can conclude that y = e and obtain

lim (1 + ]> = e,
xX—co X

You can use a graphing utility to confirm this result, as shown in Figure 8.15.
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L'Hopital’s Rule can also be applied to one-sided limits, as demonstrated in
Examples 6 and 7.

EXAMPLE 6 Indeterminate Form 0°
L "
Find lim (sin x)*.

x—0

Solution  Because direct substitution produces the indeterminate form 0°, you can
proceed as shown below. To begin, assume that the limit exists and is equal to y.

y = lim (sin x)* Indeterminate form 0°
x—0"
Iny = ln[ lim_ (sin x)x] Take natural log of each side.
x—07
= lim [In(sin x)¥] Continuity
x—=0*
= liI(I)l+ [x In(sin x)] Indeterminate form 0 + (—oo)
)
. In(sinx) o
= lim ———~ Indeterminate form —oo/co
>0t 1/x
li cotx L'Hoépital’s Rul
= lim 'Hoépital’s Rule
=0t —1/x2 i
e
= lim Indeterminate form 0/0
x—0* tan x
. —2x )
= lim 5. = 0 L’Hépital’s Rule
x—0* Secx

Now, because Iny = 0, you can conclude that y = €® = 1, and it follows that

lim (sin )C)x = 1. ——
x—0%

TECHNOLOGY When evaluating complicated limits such as the one in
Example 6, it is helpful to check the reasonableness of the solution with a computer
or with a graphing utility. For instance, the calculations in the following table and
the graph in Figure 8.16 are consistent with the conclusion that (sin x)* approaches
1 as x approaches () from the right.

P y = (sin x)*
[ x 1.0 0.1 0.01 0.001 | 0.0001 | 0.00001
(sinx)* | 0.8415 | 0.7942 | 0.9550 | 0.9931 | 0.9991 0.9999
'g_\____,—l—""___"ln.
i i .2 Use a computer algebra system or graphing utility to estimate the following limits:
lim (1 — cos x)*
1 x—0
1 and
The limit of (sin x)* is I as x approaches 0 lim (tan x)*.
from the right. O

Figure 8.16 Then see if you can verify your estimates analytically.



STUDY TIP In each of the examples
presented in this section, L’Hopital’s
Rule is used to find a limit that exists. It
can also be used to conclude that a limit
is infinite. For instance, try using
L’Hopital’s Rule to show that

lim — = oo.
x—00 X
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EXAMPLE 7 Indeterminate Form oo — o

Evaluate lim (L = ; )
—inxy x— 1

Solution Because direct substitution yields the indeterminate form co — oo, you
should try to rewrite the expression to produce a form to which you can apply
L' Hopital’s Rule. In this case, you can combine the two fractions to obtain

lim (L - ) = lim [")— - lnx]

ot \nx x—1 o x—=DInx J
Now, because direct substitution produces the indeterminate form 0/0, you can apply
L’ Hopital’s Rule to obtain

d
i (! ):an
—it\Inx x—1 =1 d

L I — (1/x)
- [(»\' — 1)(1/x) + Inx

ot \r— 1+ xlnx/
This limit also yields the indeterminate form 0/0, so you can apply L’Hopital’s Rule
again to obtain

VTR P S B,
—i\lnx  x—1 o 1+ x(1/x) + Inx
1

2' T

The forms 0/0, co/c0, 0 — 00, 0 + o0, 0%, 1°, and oo have been identified as
indeterminate. There are similar forms that you should recognize as “determinate.”

oo + oo = oo Limit is positive infinity.
—CcO — 00 — — 00 Limit is negative infinity.
0= > 0 Limit is zero.

07> - oo Limit is positive infinity.

(You are asked to verify two of these in Exercises 106 and 107.)

As a final comment, remember that L'Hopital’s Rule can be applied only to
quotients leading to the indeterminate forms 0/0 and oo/oo. For instance, the
following application of L’Hopital’s Rule is incorrect.

ex - e
lim—=1lm—=1 Incorrect use of I’Hopital’s Rule
x—0 X u x—0 1

y

The reason this application is incorrect is that, even though the limit of the denom-
inator is 0, the limit of the numerator is 1, which means that the hypotheses of
L’'Hopital’s Rule have not been satisfied.
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

Exercises for Section 8.7

Numerical and Graphical Analysis In Exercises 1-4, complete

; o ) . arcsin x . arctanx — (m/4)
the table and use the result to estimate the limit. Use a graphing 21 lim ——— 22, lim————————

=0 X — 1 x—1
utility to graph the function to support your result. = -

L 32 —-2x+ 1 , x—1
1. [im SinSx Y 3 % By X%k 2y 3
" x—0sin 2x 2 3
25, fim T2 *3 26, lim —
X-—>00 x—1 vedze X+ 2
x | =01 | -001 | -0001 | 0.001 | 0.01 | 0.1 = 2
£6) 2l i, B Sl
i 29. lim ——— 30. lim —o—
2, lime—=s w00 /x2 + 1 o0 /3 + |
x—0 X 1
31 lim °°;x 32. lim xsm’;
X0 xXx—oe e
x —0.1 | —0.01 | —0.001 | 0.001 | 0.01 | 0.1 | 4
. Inx . Inx
£ 1 S e % A
X x/2
35. lim 5 36. lim °
3. lim x5 ¢ /100 x—oo X x—o00 X
X—00
R | 10 102 | 107 | 104 | 10° H" In Exercises 37-54, (a) describe the type of indeterminate form

(if any) that is obtained by direct substitution. (b) Evaluate the
fx) limi¢, using I’Hopital’s Rule if necessary. (c) Use a graphing
utility to graph the function and verify the result in part (b).

4 lim 3fo— = 37. Jim Ly, 38. lim x7 cotx
1
39. lim (x sin l) 40. lim xtan—
X 1 10 102 | 107 | 104 | 10° A % 20 x
i 1/x g X 2/x
£ 41. ,rligk x 42. V\-Il>r([)1+ (e* + x)
43. lim x'/~ 44, lim (| + )1_c>
r—co X—00
In Exercises 5-10, evaluate the limit (a) using techniques from i Ur . -
Chapters 1 and 3 and (b) using L’Hépital’s Rule. 45. lim (1 +x) 46. lim (1 + x)
s — 3) 22—y — 3 47. lim [3(x)?] 48. lim [3(x — 4)]*~4
5. lim =— 6. lim ———= w0 e
—3 X~ — 9 x——1 x + 1 I 1 50. i <7T )]x
v W ‘f: | =2 . sindx e \‘lH]’r (]le * Xl)%l+ I:COS 2 -
7. lim ————— 8. lim
A3 x—3 =0 2x r 8 x 1 ;"x -1
51. ]im(—, — - ) 52 lim|—5— — %
9% 1 Sy — 3 4+ | 10. 2x + 1 o2\t — 4 x—2 o2\ x2 — 4 x2—4
- lim ———— . lim
(= =] 3.':—5 xoo42+ 3
' el 53. 1im (-— - ) 54. lim <9 - %)
—itinx x—1 F—-0+\ X X

In Exercises 11-36, evaluate the limit, using L’Héopital’s Rule if

necessary. (In Exercise 18, z is a positive integer.) B m Exercises 55—58, use a graphing utility to (a) graph the func-

tion and (b) find the required limit (if it exists).

2 - fy: S 2
Tim [ 2= =2 12 lim — =
=2 x—=2 N1 x4 ) x—3
. JE—x-12 P 55 2 = 3)
13. lim ——— 14. lim —
x—0 X N2 Xi— & 56. lim (sin x).\-
15, =St~ %) 16, fim —nE" .
" -0 X T sta? — | 57. lim (\/x2 +5x+2 - x)
X—C0
17, fig &=Lt 18, fim &= (T X3
Y0+ X =0 bl 58. lim M
in 2x sin ax =G
19. lim 22 20. lim .

¥—0 sin 3x v—0 8in bx



Writing About Concepts

59, List six different indeterminate forms.
60. State L'Hopital’s Rule.

61. Find the differentiable functions f and g that satisfy the
specified condition such that

lin;f(x) = ( and 1111; glxy =0.

Explain how you obtained your answers. (Nofe: There are
many correct answers.)

o o

@ lim gy = 19 ®) e
)

© ! it glx)

62. Find differentiable functions f and g such that
lim f(x) = lim g(x) =
A0 xX—00

lim [~ (9] = 25.

oo and

Explain how you obtained your answers. (Note: There are
many correct answers.)

63. Numerical Approach Complete the table to show that x
eventually “overpowers” (In x).

X 10 102 | 10* | 108 | 10% | 10%

(In x)*
x

64. Numerical Approach Complete the table to show that e*
eventually “overpowers” x°

x |1|5]|10]20]|30]40|50]100

eI

Comparing Functions In Exercises 65-70, use L’Hépital’s
Rule to determine the comparative rates of increase of the
functions

f@x) =xm, gl)=e, and h(x) = (nx)"

wheren > 0,m > 0,and x — oco.

7

65. lim .. 66. lim =
x—o0 €7 X e

3 2

67. tim 68. lim (N
X—00 X 00 X"
69. tim (R 70, lim
X500 X y-—o00 €77
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H“’ In Exercises 71-74, find any asymptotes and relative extrema

that may exist and use a graphing utility to graph the function.
(Hint: Some of the limits required in finding asymptotes have
been found in preceding exercises.)

. y=x7% x>0 72.y=x x>0

Inx

73. y = 2xe™™ 74. y = —x—

Think About It In Exercises 75-78, L’Hopital’s Rule is used
incorrectly. Describe the error.

-__""“"L—'i—l iy e
75. lim * = |1n'r=-Zﬁ:“= Tim 2e" =2
X=) | | =l (’ Ttk —_—
76. lim sllTﬂri—T_l =_‘1_m:L_:_1'_&(4:«. T
?'_—hfl ———Xx =0 ~+— —_—
77, Tmweos— = lim coslly ")
X0 JL‘_ r—co |,1"\,
g I—\m(l/\)]fl/’\ )
2 x%oo ]/x
i =0
e*v r‘ .
78. \Il])‘go -I + 2 . nl-l-‘i‘r}' —e
T=_lim
N

=1

HU Analytical Approach TIn Exercises 79 and 80, (a) explain why

L’Hépital’s Rule cannot be used to find the limit, (b) find the
limit analytically, and (c) use a graphing utility to graph the
function and approximate the limit from the graph. Compare
the result with that in part (b).

X .
79. lim ——=—— 80. lim fanx
oo Jx2 4+ 1 x—w/2” sec x

Graphical Analysis In Exercises 81 and 82, graph f (x)/g(x)
and f/(x)/g’(x) near x = 0. What do you notice about these
ratios as x — 0? How does this illustrate L’Hdpital’s Rule?

81. f(x) = sin3x,
82, f0) =€ — 1,

glx) = sin 4x

glx) =x

83. Velocity in a Resisting Medium The velocity v of an object
falling through a resisting medium such as air or water is given
by

= 12_ ekt VOkeiM)
y = A <l + 0

where v, is the initial velocity, ¢ is the time in seconds, and k is
the resistance constant of the medium. Use L"Hopital’s Rule to
find the formula for the velocity of a falling body in a vacuum
by fixing v, and ¢ and letting k approach zero. (Assume that the
downward direction is positive.)
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84. Compound Interest The formula for the amount A in a
savings account compounded n times per year for ¢ years at an
interest rate r and an initial deposit of P is given by

nt
A= P(I + 5) :
n
Use L’Hopital’s Rule to show that the limiting formula as the
number of compoundings per year becomes infinite is given by
A = Pe',

85. The Gamma Function The Gamma Function ['(n) is defined
in terms of the integral of the function given by
f&x) =x""'e™, n > 0. Show that for any fixed value of n,
the limit of f(x) as x approaches infinity is zero.

H:" 86. Tractrix A person moves from the origin along the positive

y-axis pulling a weight at the end of a 12-meter rope (see
figure). Initially, the weight is located at the point (12, 0).

b L,
2 4 6 8 10 12

X

(a) Show that the slope of the tangent line of the path of the

weight is
dy_ V44— 2
dx x

(b) Use the result of part (a) to find the equation of the path of
the weight. Use a graphing utility to graph the path and
compare it with the figure.

(¢) Find any vertical asymptotes of the graph in part (b).

(d) When the person has reached the point (0, 12), how far has
the weight moved?

In Exercises 87-90, apply the Extended Mean Value Theorem to
the functions f and g on the given interval. Find all values ¢ in
the interval (a, b) such that

) _ f) - fla)
g'lc) g —gl)’

Functions Interval
87. flx) =3, glx) =x2+1 [0, 1]
88. flx) = %, glx) =x2—4 [1, 2]
89. f(x) =sinx, g(x) = cosx [0, g}
90. f(x) =Inx, gk =i [1, 4]

True or False? In Exercises 91-94, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

)
91. lim [M] = lim [2x1+ 1] =1

x—0 X x—0
92. If y = e*/x2% then y’ = e*/2x.
93. If p(x) is a polynomial, then lim [p(x)/e*] = 0.
x—0
04, 1f tim 2% = 1, then tim [ /() - ()] = 0.
xX—oo g(x) 10

95. Area Find the limit, as x approaches 0, of the ratio of the
area of the triangle to the total shaded area in the figure.

¥y
T fxy=1-cosx

-

(x, 1 —cos x)

(=x, 1 —cos x)

-

NI

96. In Section 1.3, a geometric argument (see figure) was used to
prove that

(a) Write the area of AABD in terms of .
(b) Write the area of the shaded region in terms of .

(c) Write the ratio R of the area of AABD to that of the
shaded region.

(d) Find lim R.
-0

Continuous Functions 1In Exercises 97 and 98, find the value of
¢ that makes the function continuous at x = 0.

4y — 28in 2x

97. f(x) = 27 A 0
c, x=0
ok | I/x
98. f(x) = (' + ), x#0
C; x=0

a—cosbx:2

99. Find the values of a and b such that lin(l) 5
>

X

"

100. Show that lim x_ = 0 for any integer n > 0.

x—o0 ¥



101.

102.

103.

¥ 104.

105.

106.

107,

(a) Let f(x) be continuous. Show that

5 flx+h) —flx—h
s 2h

= f&).

(b) Explain the result of part (a) graphically.
y

i

+—1 - = x
x—h x x+h

Let f”(x) be continuous. Show that

i LR = @ =) s

=0 h?

Sketch the graph of
eV x#0

gb) = {o, x=0

and determine g (0).
Use a graphing utility to graph

xk—1
£ ==
for k = 1, 0.1, and 0.01. Then evaluate the limit
Jim =1
o+ k

Consider the limit liIE)ﬂ (—x1nx).
x—07*
(a) Describe the type of indeterminate form that is obtained
by direct substitution.
(b) Evaluate the limit.
(c) Use a graphing utility to verify the result of part (b).
FOR FURTHER INFORMATION For a geometric approach to

this exercise, see the article “A Geometric Proof of
dlir(r)l (—dInd) = 0” by John H. Mathews in the College
50+

Mathematics Journal. To view this article, go to the website
www.matharticles.com.

Prove that if f(x) > 0, lim f(x) = 0, and lim g(x) = co, then
x—a x—=a

lim f(x)s& = 0.

X—a

Prove that if f(x) = 0, lim f{x) = 0, and lim g(x) = — oo,
r—a X—=a

then lim f(x)s® = oo,
X
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108.

109.

110.

111.
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Prove the following generalization of the Mean Value
Theorem. If f is twice differentiable on the closed interval
[a, b], then

f®) - fla) = fla)b - a) - j [0 = b) dr.

Indeterminate Forms Show that the indeterminate forms 0°,
oo?, and 1°° do not always have a value of 1 by evaluating
each limit.

(a) lim x™ 2/(1+1nx)
x—0"

(b) lim xn 2/(1+1nx)

X0

(¢) lim (x + 1)In2/x
x—0

Calculus History In L’Hopital’s 1696 calculus textbook, he
illustrated his rule using the limit of the function

V23 x — x* —a¥a’x
a—Yax’

as x approaches a, a > 0. Find this limit.

flx) =

Consider the function

+ g
h(x) — X smxl

H” (a) Use a graphing utility to graph the function. Then use the

zoom and trace features to investigate lim h(x).
X—00

(b) Find lim %(x) analytically by writing
X—00
X  sinx
=4 =
h(x) ” P

(c) Can you use L’Hopital’s Rule to find lim A(x)? Explain
your reasoning. o

Putnam Exam Challenge

112. Evaluate

1 at— 1]~
lim [— . ]
oo |lx  a— 1

wherea > 0, a # 1.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Improper Integrals

* Evaluate an improper integral that has an infinite limit of integration.
* Evaluate an improper integral that has an infinite discontinuity.

Improper Integrals with Infinite Limits of Integration

The definition of a definite integral

L b Sx) dx

requires that the interval [a, b] be finite. Furthermore, the Fundamental Theorem of

Calculus, by which you have been evaluating definite integrals, requires that f be

continuous on [a, b]. In this section you will study a procedure for evaluatin g integrals

that do not satisfy these requirements—usually because either one or both of the limits
y of integration are infinite, or f has a finite number of infinite discontinuities in the
interval [a, b]. Integrals that possess either property are improper integrals. Note that
a function f is said to have an infinite discontinuity at c if, from the right or left,

2
lim f(x) = oo or lim f(x) = —oco.
I e o
; To get an idea of how to evaluate an improper integral, consider the integral
f I i j x b b
|
1 2 b 3 4 d_/;:_l]:_l.,_l:l_—
b —s oo | X X b b
The unbounded region has an area of 1. which can be interpreted as the area of the shaded region shown in Figure 8.17. Taking
Figure 8.17 the limit as b — oo produces

Cdx Pdx\ 1\
_j; ;_blggo<ﬁ x2>_blg&<l_b>_l'

This improper integral can be interpreted as the area of the unbounded region between
the graph of f(x) = 1/x? and the x-axis (to the right of x = 1).

Definition of Improper Integrals with Infinite Integration Limits

1. If f is continuous on the interval [a, co), then
oo b
f f) dx = lim f f(x) dx.
a b—oo a
2. If f is continuous on the interval {— oo, b], then
b b
f fx)dx = lim f flx) dx.
—co a2=% Ja

3. If fis continuous on the interval (— oo, oo), then

fo F00) dx f_ 70 dx + f ) d

where ¢ is any real number (see Exercise 110).

In the first two cases, the improper integral converges if the limit exists—
otherwise, the improper integral diverges. In the third case, the improper integral
on the left diverges if either of the improper integrals on the right diverges.




Diverges
(infinite area)

This unbounded region has an infinite area.

Figure 8.18

EXAMPLE |

Evaluate f @
. X

Solution

< dx )
L X b0

I
3

= o

&

I
=
=
—_
—
=
S

I
(=}
=

See Figure 8.18.
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An Improper Integral That Diverges

ke limit as b — co.

Apply Log Rule.

Apply Fundamental Theorem of Calculus.

Evaluate limit.

NOTE Try comparing the regions shown in Figures 8.17 and 8.18. They look similar, yet the
region in Figure 8.17 has a finite area of | and the region in Figure 8.18 has an infinite area.

EXAMPLE 2
Evaluate each improper integral.
a. f e “dx
0
Solution
o0 b
a.f e dx = limf e “dx
0 b=ee o

b
lim | —e™*
b—oo 0

= lim (—e7? + 1)

b0

=1

See Figure 8.19.

y

The area of the unbounded region is 1.
Figure 8.19

Improper Integrals That Converge

<1
b.fo x2+1dx

® |
b'J; x2+ldx blggoj;mdx

b
lim [arctan x}

b—oo 0

i

= lim arctan b

b—co
-7
2
See Figure 8.20.
v
2
B 1
4 Tx%rl
I
|
| 1 = -
[ 2 3

The area of the unbounded region is 7 /2.
Figure 8.20
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In the following example, note how L'Hdpital’s Rule can be used to evaluate an
improper integral.
EXAMPLE 3 Using L’Hoépital’s Rule with an Improper Integral
E————

o0

Evaluate J (1 — x)e " dx.
1

Solution  Use integration by parts, with dv = e *dx and u = (1 — x).

f(l —x)eFdx=—e 1 —x) — fex dx
=—e*+txe*t+te*+C
=xe*+ C

Now, apply the definition of an improper integral.

co b
e J (1 = x)e > dx = blim [xe"‘]
1

—00 1

( , b) 1
= lim —) -~
—-0.03 |- b—co e e
~0.06 Finally, using I’Ho6pital’s Rule on the right-hand limit produces
N . b 1
0.09 - lim — = lim — =0

b—oo e b—co €
~0.12
015 from which you can conclude that

foo] . 1

The area of the unbounded region is Jl (1 = x)e dx = i,
|—1/¢]|.
Figure 8.21 See Figure 8.21.

EXAMPLE 4 Infinite Upper and Lower Limits of Integration

o0 ex

Evaluate f _ m dx.

Solution Note that the integrand is continuous on (—oo, c0). To evaluate the
integral, you can break it into two parts, choosing ¢ = 0 as a convenient value.

= e’ : e~ P e
_ 1+62xdx= _ 1+e2"dx+ n 1+62xdx

0
= lim [arctan e"] + lim [arctan ex]
b—oo

b

y b——co b 0

'l

. T ) T
= lim (— — arctan e”) + lim (arctan el — —)
b—oo

b>—oo \ 4 4
T T T
= — — + b B
4 0 2 4
Y - S -
2 4 | 1 2 =
2

The area of the unbounded region is 7/ 2.
Figure 8.22 See Figure 8.22. e —



The work required to move a space module
an unlimited distance away from Earth is
approximately 6.984 x 10!! foot-pounds.
Figure 8.23
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EXAMPLE 5 Sending a Space Module into Orbit

In Example 3 of Section 7.5, you found that it would require 10,000 mile-tons of work
to propel a 15-metric-ton space module to a height of 800 miles above Earth. How
much work is required to propel the module an unlimited distance away from Earth’s
surface?

Solution At first you might think that an infinite amount of work would be required.
But if this were the case, it would be impossible to send rockets into outer space.
Because this has been done, the work required must be finite. You can determine the
work in the following manner. Using the integral of Example 3, Section 7.5, replace
the upper bound of 4800 miles by co and write

240,000,000

W= dx
4000 2
. [ 240,000,000}”
=lim|——"—""—
s X 4000
_ g (_240,000,000 N 24{),000.000)
el b 4000
= 60,000 mile-tons
=~ 6.984 x 101! foot-pounds.
See Figure 8.23. —

Improper Integrals with Infinite Discontinuities

The second basic type of improper integral is one that has an infinite discontinuity at
or between the limits of integration.

Definition of Improper Integrals with Infinite Discontinuities

1. If f is continuous on the interval [a, b) and has an infinite discontinuity at b,
then

b c
j fx) dx = Cllril_ f Fx) dx.

2. If f is continuous on the interval (a, b] and has an infinite discontinuity at a,
then

b b
f fx) dx = 1_1>I{rll+f f(x) dx.

3. If £ is continuous on the interval [a, b], except for some ¢ in (a, b) at which
f has an infinite discontinuity, then

ff(x) dx=£f(x)dx+ ff(x)dx.

In the first two cases, the improper integral converges if the limit exists—
otherwise, the improper integral diverges. In the third case, the improper integral
on the left diverges if either of the improper integrals on the right diverges.
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L, D

| 2

Infinite discontinuity at x = 0
Figure 8.24

2

The improper integral f

Figure 8.25

1/x3 dx diverges.
|

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

EXAMPLE 6 An Improper Integral with an Infinite Discontinuity
|

|
dx
Evaluat B
Vauae'[)g/)—c

Solution  The integrand has an infinite discontinuity at x = 0, as shown in Figure
8.24. You can evaluate this integral as shown below.

| 2/3 |
—1/3 . 25
fo ! B bllf(l)l* [2/3]1;

.3 )
= k5 — /3
bli%l" 2 (1= b7

I

EXAMPLE 7 An Improper Integral That Diverges
L]

2
Evaluatef 5%

o X

Solution  Because the integrand has an infinite discontinuity at x = 0, you can write

2

dx ) |
— = lim | ———
0 X b->0" ye

So, you can conclude that the improper integral diverges.

EXAMPLE 8 An Improper Integral with an Interior Discontinuity
L]

2
Evaluate f @

3
X

Solution  This integral is improper because the integrand has an infinite discontinuity
at the interior point x = 0, as shown in Figure 8.25. So, you can write

2 dx O dx 2 dx
P e S
Y X o X

From Example 7 you know that the second integral diverges. So, the original improper

integral also diverges. ——

NOTE Remember to check for infinite discontinuities at interior points as well as endpoints
when determining whether an integral is improper. For instance, if you had not recognized that
the integral in Example 8 was improper, you would have obtained the incorrect result
’ @,;‘—_1]2 1,13
|x3'"2x2 1 8§ 2 8

Incorrect evaluation

/
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.\—!

=L
Vxix+ 1)

The area of the unbounded region is .
Figure 8.26

-1

The circumference of the circle is 247.
Figure 8.27

SECTION 8.8 Improper Integrals 583

The integral in the next example is improper for two reasons. One limit of
integration is infinite, and the integrand has an infinite discontinuity at the outer limit
of integration.

EXAMPLE 9 A Doubly Improper Integral

Evaluate foo - dr
o Valx+1)

Solution To evaluate this integral, split it at a convenient point (say, x = 1) and
write

i e My
lim [2 arctan \/)_c} + lim [
b—0* b c—0

25)-0+(5)-13)

= .

1l

See Figure 8.26.

EXAMPLE 10 An Application Involving Arc Length

Use the formula for arc length to show that the circumference of the circle
x> +y2=1is2m

Solution To simplify the work, consider the quarter circle given by y = V1 — x2,

where 0 < x < 1. The function y is differentiable for any x in this interval except
x = 1. Therefore, the arc length of the quarter circle is given by the improper integral

s=£x/1+—(y’)2dx
=L:\/1+<—1\/__-f_?>2dx

This integral is improper because it has an infinite discontinuity at x = 1. So, you can
write

f

s

0 ]
l aI‘(,Sln X

0

lim

Pare
LU
2
1)

X
Finally, multiplying by 4, you can conclude that the circumference of the circle is
4s = 247, as shown in Figure 8.27. —_—
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FOR FURTHER INFORMATION For
further investigation of solids that have
finite volumes and infinite surface areas,
see the article “Supersolids: Solids Having
Finite Volume and Infinite Surfaces” by
William P. Love in Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.

FOR FURTHER INFORMATION 'To learn
about another function that has a finite
volume and an infinite surface area, see
the article “Gabriel’s Wedding Cake”

by Julian F. Fleron in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

This section concludes with a useful theorem describing the convergence or
divergence of a common type of improper integral. The proof of this theorem is left
as an exercise (see Exercise 49).

THEOREM 8.5 A Special Type of Improper Integral

wdx —7
@ _ 1y -1
J -

diverges,

ifp > 1

ifp <1

EXAMPLE 11 An Application Involving A Solid of Revolution

The solid formed by revolving (about the x-axis) the unbounded region lying between
the graph of f(x) = 1/x and the x-axis (x > 1) is called Gabriel’s Horn. (See Figure
8.28.) Show that this solid has a finite volume and an infinite surface area.

Solution
to be

Using the disk method and Theorem 8.5, you can determine the volume

ey
SRR

The surface area is given by

S =2 wf(x)\/l + L)) dx = 27Tfm§\/1 + %dx.
] 1

V=

Theorem 8.5, p = 2 > |

Because
1
1+ F > 1

on the interval [1, o), and the improper integral

“1

J’ —dx

0

diverges, you can conclude that the improper integral

["L/1+ ke
. X X

also diverges. (See Exercise 52.) So, the surface area is infinite.

=L k21

Gabriel’s Horn has a finite volume and an infinite surface area.
Figure 8.28
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

Exercises for Section 8.8

In Exercises 1-4, decide whether the integral is improper.
Explain your reasoning.

'odx ? dx

o B2 s

In Exercises 5-10, explain why the integral is improper and
determine whether it diverges or converges. Evaluate the
integral if it converges.

4 A |
5. | —=dx 6. | ——==dx
J; Vx L (x — 3)3/2
Yy y
4 50 -
3.. 40-._
30 -
2
20 -+
1 10_
; 3 I = 3w x — | |
1 2 3 4 1 2

HV Writing In Exercises 11-14, explain why the evaluation of the

integral is incorrect. Use the integration capabilities of a graph-
ing utility to attempt to evaluate the integral. Determine
whether the utility gives the correct answer.
e s ~pd__ 9 o =
1 | Zws 2 12. f S S
i = - ~9

:1'.

e T

13. J- ey = 0 14. J‘ see¥ely = 0
oy T o e

In Exercises 15-32, determine whether the improper integral

diverges or converges. Evaluate the integral if it converges.

15. J‘ L, dx 16. %dx
[ ¥ L X
{v.a) 3 ; [ee) 4
17. j ==k 18. f — dx
Y | Y
19. j K= glx 20. f xe~*/2 dx
s 4]
21. J e Vdx 22. j (x — e ~dx
0
23. f e cos Xy 24. f e “sinbxdx, a>0
0
25, || —de 2. | BXg
4 aflnx) 10X
27. J:K PR dx 28. L o2+ 17 dx
= ] *
29, J:] sr— dx 30. L T e"dx
31. f COs X ey 32. f sin z dx
(] 0 2

In Exercises 33—-48, determine whether the improper integral
diverges or converges. Evaluate the integral if it converges, and
check your results with the results obtained by using the
integration capabilities of a graphing utility.

1 4
33, izdx 34, f ﬂtb.
o X
:
3s. ——F—dx 36.
o Y8 —x J J6 = X
1
37. f xInxdx 38, flnxzdx
0
w2
39. j tan £ 6 40. f sec 6d6
(8]
41 j ;u’\' 42, J
ThoaxrT—4
' 1 J‘
43. —— X 44, 2
J.g JaE—4 ! =
P
45, J; Vel lu’.\ 46. J = 2)8/3
= g
4. i 48.
o alx + 6) o J’ xlnx
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In Exercises 49 and 50, determine all values of p for which the
improper integral converges.

= "1
49. —dx 50. —dx
X o X

51. Use mathematical induction to verify that the following integral
converges for any positive integer n.

oo
j x"e ¥ dx
0

52. Given continuous functions f and g such that 0 < f(x) < g(x)
on the interval [a, co), prove the following.

(a) If [° g(x) dx converges, then [7° f(x) dx converges.
(b) If [ f(x) dx diverges, then [°° g(x) dx diverges.

o

In Exercises 53—-62, use the results of Exercises 49-52 to deter-
mine whether the improper integral converges or diverges.

| |
| |
53. j“ S 54. L Vi
oo I

SS.J. = dx 56.f xe ¥ dx
(i 0

I
_— !',
, a1
59.f %ﬂ‘,\‘
2 Valx — 1)
e 1
60. ———dx
ﬁ Vxlx + 1)
61.f e~**dx
0

R |
62. d
L Jxlnx *

Writing About Concepts

63. Describe the different types of improper integrals.

64. Define the terms converges and diverges when working
with improper integrals.

|
65. Explain why f_] x—13dx 0.

66. Consider the integral

3
10
[
o X — 2x
To determine the convergence or divergence of the integral,
how many improper integrals must be analyzed? What must

be true of each of these integrals if the given integral
converges?

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

Area In Exercises 67-70, find the area of the unbounded
shaded region.

67.y=¢5, —oo<x<1 68. y=—lInx
y y
A
3 3
2 2
(P 1
_-'_’/|
+ ' + X I
-3 -2 -1 I

|
~1= 1
|

70. Witch of Agnesi:

_ 1 8
YT YT T4
B2 y
A
kE!= 6
2 4
'——/|¥r x —T +— - X
-3 -2 -1 1 2 3 -6 —4 -2 2 4 6
_l _2 A
—2 -4
=3 -6

Area and Volume In Exercises 71 and 72, consider the region
satisfying the inequalities. (a) Find the area of the region. (b)
Find the volume of the solid generated by revolving the region
about the x-axis. (¢) Find the volume of the solid generated by
revolving the region about the y-axis.

1
72.yS;,y20,x21

1. y<e™ y20,x20

73. Arc Length Sketch the graph of the hypocycloid of four
cusps

X3 4923 =4

and find its perimeter.
74. Arc Length Find the arc length of the graph of

y= =2
over the interval [0, 4].
75. Surface Area The region bounded by
(x—22+y2=1
is revolved about the y-axis to form a torus. Find the surface

area of the torus.

76. Surface Area Find the area of the surface formed by revolving
the graph of y = 2¢™* on the interval [0, oo) about the x-axis.



Propulsion In Exercises 77 and 78, use the weight of the rocket
to answer each question. (Use 4000 miles as the radius of Earth
and do not consider the effect of air resistance.)

(a) How much work is required to propel the rocket an
unlimited distance away from Earth’s surface?

(b) How far has the rocket traveled when half the total work
has occurred?

77. 5-ton rocket 78. 10-ton rocket

Probability A nonnegative function f is called a probability
density function if

f; f@)de=1.

The probability that x lies between a and b is given by

Pla<x<b) =fbf(t)dt.

The expected value of x is given by

E(x) = J - tf (o) dt.

In Exercises 79 and 80, (a) show that the nonnegative function
is a probability density function, (b) find P(0 < x < 4), and
(¢) find E(x).

L,—/7
_ e 120
79. f(0) {0’ <0
2 ,-2(/5
_ Jse , 120
L {0, t<0

Capitalized Cost In Exercises 81 and 82, find the capitalized
cost C of an asset (a) for n = 5 years, (b) for n = 10 years, and
(¢) forever. The capitalized cost is given by

C=C,+ f c(®e " dt
0

where C, is the original investment, ¢ is the time in years, r is the
annual interest rate compounded continuously, and c(¢) is the
annual cost of maintenance.
81. C, = $650,000

c(f) = $25,000

r= 0.06

82. C, = $650,000
c(f) = $25,000(1 + 0.087)
r=0.06

83. Electromagnetic Theory The magnetic potential P at a point
on the axis of a circular coil is given by

27w NIr |*° 1
P="% f P+

where N, I, r, k, and ¢ are constants. Find P,
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84. Gravitational Force A “semi-infinite” uniform rod occupies
the nonnegative x-axis. The rod has a linear density 8 which
means that a segment of length dx has a mass of & dx. A parti-
cle of mass m is located at the point (—a, 0). The gravitational
force F' that the rod exerts on the mass is given by

“ GM$§
F—L (a+x)2dx

where G is the gravitational constant. Find F.

True or False? In Exercises 85-88, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

85. If f is continuous on [0, 0o) and lim f(x) = 0, then [§° f(x) dx
converges. e

86. If f is continuous on [0, 00) and f5° f(x) dx diverges, then
lim f(x) # 0.

Y00
87. If f’ is continuous on [0,00) and lim f(x) = 0, then
A—00
I3 f () dx = —£(0).
88. If the graph of f is symmetric with respect to the origin or the

y-axis, then [3° f(x) dx converges if and only if [, f(x) dx
converges.

89. Writing

(a) The improper integrals

fldx and j%dx
X X

diverge and converge, respectively. Describe the essential
differences between the integrands that cause one integral
to converge and the other to diverge.

(b) Sketch a graph of the function y = sin x/x over the interval
(1, 00). Use your knowledge of the definite integral to
make an inference as to whether or not the integral

* sin x
dx
| x

converges. Give reasons for your answer,

(c) Use one iteration of integration by parts on the integral in
part (b) to determine its divergence or convergence.

lﬂl‘:‘ 90. Exploration Consider the integral

/2
| e
o 1+ (tan x)"

where # is a positive integer.
(a) Is the integral improper? Explain.

(b) Use a graphing utility to graph the integrand for n = 2, 4,
8, and 12.

(c) Use the graphs to approximate the integral as n — co.

(d) Use a computer algebra system to evaluate the integral for
the values of »n in part (b). Make a conjecture about the
value of the integral for any positive integer n. Compare
your results with your answer in part (c).
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91.

92.

Laplace Transforms

CHAPTER 8

The Gamma Function The Gamma Function I'(n) is
defined by

I'(n) = f x"le*dx, n >0,
0

(a) Find I'(1), T'(2), and T'(3).
(b) Use integration by parts to show that I'(n + 1) = nI'(n).

(c) Write I'(n) using factorial notation where n is a
positive integer.

n—1
Prove that I, = (m)l"_ 1» where
had x2n—1
s = T = 1.
n ‘L (xz + 1)n+3 dx’ . 1

Then evaluate each integral.

(a) f
o[
@ L (xT+ e

Let f(t) be a function defined for all

Ry leh

n 1}501\?

positive values of z. The Laplace Transform of f(f) is defined by

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

102. (a) Sketch the semicircle y = /4 — x2.
(b) Explain why

_zﬁi\m f\/‘—de

without evaluating either integral.

103. For what value of ¢ does the integral

f °°< 1 o ) e
0 ~ )Cz +1 x+1
converge? Evaluate the integral for this value of c.

104. For what value of ¢ does the integral

*( ex 1
J; <x2+2_3x>dx

converge? Evaluate the integral for this value of c.

105. Volume Find the volume of the solid generated by revolving

the region bounded by the graph of f about the x-axis.

Fla) = {xlnx,

O0<x<2
x=0

106. Volume Find the volume of the solid generated by revolving
the unbounded region lying between y = —In x and the y-axis

(y = 0) about the x-axis.

F(s) = f " e £0) de

u-Substitution In Exercises 107 and 108, rewrite the improper
integral as a proper integral using the given u-substitution.
Then use the Trapezoidal Rule with » = 5 to approximate the

if the improper integral exists. Laplace Transforms are used to
solve differential equations. In Exercises 93-100, find the
Laplace Transform of the function.

93.
95.
97.
99.

= 101.

fly=1 9. f(r) =

[l =12 96. f(f) = e
f() = cos at 98. f(t) = sinat
f(#) = cosh ar 100. f() = sinh at

Normal Probability The mean height of American men
between 18 and 24 years old is 70 inches, and the standard
deviation is 3 inches. An 18- to 24-year-old man is chosen at
random from the population. The probability that he is 6 feet
tall or taller is

e (= T0P/18 gy

<1
P(72 £ x < 00) =
( ) J;z 3\/2’7T

(Source: National Center for Health Statistics)

(a) Use a graphing utility to graph the integrand. Use the
graphing utility to convince yourself that the area between
the x-axis and the integrand is 1.

(b) Use a graphing utility to approximate P(72 < x < co).

(c) Approximate 0.5 —P(70 < x < 72) using a graphing
utility. Use the graph in part (a) to explain why this result
is the same as the answer in part (b).

integral.

|

sin x

107. dx, u= Jx
J;) Jx

CoS x

108.
L V1 —x
109. (a) Use a graphing utility to graph the function y = ™,

oo 1
(b) Show that J e Ydx = f V—Inydy.
0 0

dx, u=-Jv1—-—x

110. Let f f(x) dx be convergent and let @ and b be real numbers

where a # b. Show that

| s [rwa=| e [ rwa
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See www CalcChat.com for worked-out solutions to odd-numbered exercises.

Review Exercises for Chapter 8

In Exercises 1-8, use the basic integration rules to find or
evaluate the integral.

1. J‘.\"\/.\': — 1dx

X g
3. f.t‘3 — Iu',\ \/I —

“In(2y) )
5. = 6. | 2xv/2x - 3ax
) 3/2
16 xt+ 24+ x+1
7. leﬁ = ds s.j o

In Exercises 9-16, use integration by parts to find the integral.

9. jez’“ sin 3x dx 10. J (x2 — 1)e*dx
11. jx\/m dx 12. farctan 2x dx
13. fxz sin 2x dx 14. fan)ﬁ—ﬂ_ dx

15. f x arcsin 2x dx 16. f e* arctan e* dx

In Exercises 17-22, find the trigonometric integral.

g TX
18. fsm > dx

20. f tan @ sec* 0d0

17. fcos3( ax — 1) dx

19. J. sect % dx
| —1
)1 =sing"

Area In Exercises 23 and 24, find the area of the region.

22, f cos 26(sin 6 + cos 6)% d6

23, y = sin*x 24, y = cos(3x) cos x
y it
A

3 |

i

LA

2

r

4A

-— j e ——
r oz & & -1
4 2 4

|
IS

In Exercises 25-30, use trigonometric substitution to find or
evaluate the integral.

e - \/ X
2; v—‘-‘ l’
. JJ ax

x >3

o |
26. j —xx9 dx,

28. J-\/9 — 4x?dx

0
29.f V4 — x%dx
=7

/2 .
30. sin @ ~
o 1+ 2cos*8

In Exercises 31 and 32, find the integral using each method.

%
31. j ﬁdx
(a) Trigonometric substitution
(b) Substitution: u*> = 4 + x?
(c) Integration by parts: dv = (x/ VA + 22 ) dx

32. fx\/4 + x dx

(a) Trigonometric substitution

(b) Substitution: u? =4 + x

(c) Substitution: u = 4 + x

(d) Integration by parts: dv = /4 + xdx

In Exercises 33-38, use partial fractions to find the integral.

o — 72§ 13 e 7) —
33f =28 34-f2x 5x + 4 4,
xr—x—6 X=X
x4 2y 4x — 2
35, J'.\'-" Y dx 36. J.‘S{.\‘ BT dx
x2 sec? 0
37. J,rz + 2% — 15 & S ftan f(tan 6 — 1) a6

In Exercises 39—-46, use integration tables to find or evaluate
the integral.

x X
. ~d ———dx
39 J'{_, nEETL X 40 fm(f\
2 1
) X
4. [, 1+ \lnrd\ 42. ju 1 +e” 2y
43, J | 4\ + 8 ax
44, J sy, x> £
\/91? =i 3
45, f dx
510 TrX COs Y

i !_-
46: |+ tan 7y e

47, Verify the reduction formula
f (In x)" dx = x(In x)* — nf (in x)" ! dx.

48. Verify the reduction formula

ftan”xdx = L
—

1 tan” "l x — ftan"‘zxdx.
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In Exercises 49-56, find the integral using any method.

we /D
50. f S

49, f 0 sin cos 6d0 -
J

x|/4
51. J‘E—t;—;77§¢ix

53. f\/l + cos x dx

52, f\/l + Jrdx

3x3 + 4x
54, f(xz o l)zdx

55. fcos x In(sin x) dx 56. f (sin @ + cos 0)2 d0

In Exercises 57-60, solve the differential equation using any
method.

— B2
57 29 58, & _M4— ¥

d« x*—9 dx 2x
59. y’ = In(x? + x) 60. y'= /1 —cos 0

In Exercises 61-66, evaluate the definite integral using any
method. Use a graphing utility to verify your result.

|
X
62. L o

In x 2
—dx 64. f xe' ey
0

5

61. f x(x? — 4)3/2 dx
=

63.

1

X

ke 3 A
65.f xsin x dx 66.J —L
0 0 yfl 5

Area In Exercises 67 and 68, find the area of the region.

67. y = xJ/4 —x 68. y = !

25 — x?

Y y
"

Centroid In Exercises 69 and 70, find the centroid of the region
bounded by the graphs of the equations.

69. y=JV1—-x% y=0
70. (x —1)2+y2=1, (x—4)2+y2=4

Arc Length  In Exercises 71 and 72, approximate to two decimal
places the arc length of the curve over the given interval.

Function Interval

71. y = sinx [0, 7]
72. y = sin?x [0, 7]

Integration Techniques, L."Hopital’s Rule, and Improper Integrals

In Exercises 73-80, use L’Hopital’s Rule to evaluate the limit.

2 ;
73. lim 1) 74. lim %

=l x — 1 x>0 sin 27rx

. e2r R _.2
75. lim — 76. lim xe ™

v—oo X t—Co
77. lim (In x)2/* 78. lim (x — 1)n~

x>0 x—>1%

.09\" ) 2 2

79. lim 1000(1 + L0 80. lim <— = )

n—co n =1+ \1lnx x—1

In Exercises 81-86, determine whether the improper integral
diverges or converges. Evaluate the integral if it converges.

16 4 6
1. — 82. : ik
’ L i f—l

o0 oC ‘:._ LIJ"
83. x21In x dx 84. 2 dx
L o

85. f LuE Sﬁ.J‘ L
Lox v Yx

87. Present Value The board of directors of a corporation is cal-
culating the price to pay for a business that is forecast to yield
a continuous flow of profit of $500,000 per year. If money will
earn a nominal rate of 5% per year compounded continuously,
what is the present value of the business

(a) for 20 years?
(b) forever (in perpetuity)?
(Note: The present value for ¢, years is [; 500,000e005 dt,)

88. Volume Find the volume of the solid generated by revolving
the region bounded by the graphs of y = xe™*, y = 0, and
x = 0 about the x-axis.

F}"’ 89. Probability The average lengths (from beak to tail) of

different species of warblers in the eastern United States are
approximately normally distributed with a mean of 12.9
centimeters and a standard deviation of 0.95 centimeter (see
figure). The probability that a randomly selected warbler has a
length between a and b centimeters is

b

1
| 129220099 gy
e .
0.95V2m J,

Use a graphing utility to approximate the probability that a
randomly selected warbler has a length of (a) 13 centimeters or
greater and (b) 15 centimeters or greater. (Source: Peterson’s
Field Guide: Eastern Birds)

P

Pla<x<b)=

0.50

0.25

| 4
I 12 13 14 15 16

A T
9 10 1




Problem Solving

PS. Problem Solving 591

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

1. (a) Evaluate the integrals

JI (1 —x*dx and f] (1 = x2)2dx.

(b) Use Wallis’s Formulas to prove that

1
22n+l(n!)2
A LN |/
f_l(l P 2n + 1)!

for all positive integers n.

L |

In x dx and f (In x)? dx.

2. (a) Evaluate the integrals f
0 0

(b) Prove that
|
f (Inx)" dx = (—1)*n!
0

for all positive integers n.

3. Find the value of the positive constant ¢ such that

. x+ c\*
]1m( >=9
XYoo \X — C

4. Find the value of the positive constant ¢ such that

li (x — c>x _1
xl>r£lo x+c 4

S. In the figure, the line x = 1 is tangent to the unit circle at A. The
length of segment QA equals the length of the circular arc PA.

Show that the length of segment OR approaches 2 as P
approaches A.

b

>< ’
A(l,0)
] - x

6. In the figure, the segment BD is the height of AOAB. Let R be
the ratio of the area of ADAB to that of the shaded region formed
by deleting AOAB from the circular sector subtended by angle
6. Find 011)[{)1{ R.

7. Consider the problem of finding the area of the region bounded

by the x-axis, the line x = 4, and the curve
2

y= (x> + 9)3/2'
Fjﬂ (a) Use a graphing utility to graph the region and approximate
its area.

(b) Use an appropriate trigonometric substitution to find the
exact area.

(c) Use the substitution x = 3 sinh u to find the exact area and
verify that you obtain the same answer as in part (b).

8. Use the substitution u = tan% to find the area of the shaded
1
i d h h of y= —— <x < /2
region under the graph of y T T cosx 0<x<a/
(see figure).

Y
A

| 4
H—/\—’

4—x
2n

it

4
T o
2

9. Find the arc length of the graph of the function y = In(1 — x?)
on the interval 0 < x < %(see figure).

y

10. Find the centroid of the region above the x-axis and bounded
above by the curve y = e <™’ where ¢ is a positive constant
(see figure).

(Hint: Show thatf e~ gy = lf e dx)
0 cJo
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CHAPTER 8

Integration Techniques, L’Hopital’s Rule, and Improper Integrals

11. Some elementary functions, such as f{(x) = sin(x?), do not H” 15. Use a graphing utility to estimate each limit. Then calculate

12.

13.

14.

have antiderivatives that are elementary functions. Joseph
Liouville proved that

e.t’
[%a
X
does not have an elementary antiderivative. Use this fact to

prove that

1
In x

is not elementary.

(a) Lety = f~!(x) be the inverse function of £, Use integration
by parts to derive the formula

[rwa =m0 - [iow.
(b) Use the formula in part (a) to find the integral

Jarosin x dx.

(c) Use the formula in part (a) to find the area under the graph
ofy=1Inx,1 < x < e (see figure).
y

Factor the polynomial p(x) = x* + 1 and then find the area
under the graph of y = JYRNET 0 < x < 1 (see figure).
y
|
{ - X
|

e ™ .
(a) Use the substitution # = — — x to evaluate the integral

2
J"rr/2
0

(b) Let n be a positive integer. Evaluate the integral

sinx
cos x + sin.x

2 .

4 sin” x .
o 1 oo dx.
o cos'x + sin"x

16.

17.

18.

19.

20.

21.

each limit wsing L'Hopital’s Rule. What can you conclude
about the indeterminate form O - co?

(a) lim (cotx + l) (b) lim (cotx = l)
x—=0* X x—=0* X

(c) lim [(cotx + l)(cotx . l)]
0" x X

Suppose the denominator of a rational function can be factored
into distinct linear factors
Dx)=(x—c)x—c,) - - x—c,)
for a positive integer n and distinct real numbers ¢, ¢,, . . ., ¢,
If N is a polynomial of degree less than n, show that
P
M . 1 + L 4+ 4 P”
Dx) x—¢ x-—g % — e
where P, = N(c,)/D"(c,) fork = 1,2, . . ., n. Note that this is

the partial fraction decomposition of N(x)/D(x).

Use the results of Exercise 16 to find the partial fraction decom-
position of

¥ —-3x2+1
x* — 13x2 4+ 12x

The velocity v (in feet per second) of a rocket whose initial
mass (including fuel) is m is given by

m

v=gt+uln n , < —
m— rt r

where u is the expulsion speed of the fuel, r is the rate at which
the fuel is consumed, and g = — 32 feet per second per second
is the acceleration due to gravity. Find the position equation for
a rocket for which m = 50,000 pounds, u = 12,000 feet per
second, and r = 400 pounds per second. What is the height of
the rocket when ¢+ = 100 seconds? (Assume that the rocket was
fired from ground level and is moving straight upward.)

Suppose that f{a) = f(b) = gla) = g(b) = 0 and the second
derivatives of f and g are continuous on the closed interval
[a, b]. Prove that

| ") dx = | g0 .

Suppose that f(a) = f(b) = 0 and the second derivatives of f
exist on the closed interval [a, b]. Prove that

f (x — a)(x — b)f(x) dx = 2j)f(x) dx.

Using the inequality

1 | 1 1
<

S+t <
x5 xlO .X|5 )C5 -1 x5 .XIO X

<1
for x > 2, approximate f ———dx
, x> —1



