The disk method is one method that
is used to find the volume of a solid.
This method requires finding the
sum of the volumes of representative
disks to approximate the volume

of the solid. As you increase the

number of disks, the approximation
tends to hecome more aceurate. In
Section 7.2, you will use limits to
write the exact volume of the solid
as a definite integral.

Applications of
Integration

The Atomium, located in Belgium, represents an iron crystal molecule
magnified 165 billion times. The structure contains nine spheres

connected with cylindrical tubes. The central sphere has one tube
passing directly through its center. Explain how to find the volume of

Andre Jenny/Alamy Images

the portion of the central sphere that does not include the tube.

.

~
" 4
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~ B Area of a Region Between Two Curves

¢ Find the area of a region between two curves using integration.
* Find the area of a region between intersecting curves using integration.
* Describe integration as an accumulation process.

Area of a Region Between Two Curves

y With a few modifications you can extend the application of definite integrals from the
i ;8 area of a region under a curve to the area of a region berween two curves. Consider

Region two functions f and g that are continuous on the interval [a, b]. If, as in Figure 7.1,
:’;Lwee“ / the graphs of both / and g lie above the x-axis, and the graph of g lies below the graph
/ curves /! of f, you can geometrically interpret the area of the region between the graphs as the
_ : | f area of the region under the graph of g subtracted from the area of the region under
| the graph of f, as shown in Figure 7.2.
— i -
x=a x=b y y Yy
Figure 7.1
— — —- X — — X -x
a b a b | a b
Area of region = Area of region - Area of region
between f and g under f under g
b b b
[uw-na - [rwe - | sy
a a &
Figure 7.2
Representative rectangle To verify the reasonableness of the result shown in Figure 7.2, you can partition

Height: f(x)) - g(x))
y Width: Ax

the interval [a, b] into n subintervals, each of width Ax, Then, as shown in Figure 7.3,
sketch a representative rectangle of width Ax and height f(x;) — g(x,), where x; is
in the ith interval. The area of this representative rectangle is

AA; = (height)(width) = [ f(x,) — g(x,)] Ax.

By adding the areas of the n rectangles and taking the limit as A |- 0 (7 — o), you
obtain

nli)nolo 2[f(xt) - g(xi)] Ax,

Figure 7.3 Because f and g are continuous on [a, b], f — g is also continuous on [a, ] and the

limit exists. So, the area of the given region is

Area = lim i[f(xl») — glx)] Ax

i=1

b
= f L7 — 2] d.



NOTE The height of a representative
rectangle is f(x) — g(x) regardless of the
relative position of the x-axis, as shown
in Figure 7.4.

5. foy=x*+2
T (X, f)
14
B R T
4 S )
) =—x

Region bounded by the graph of f, the
graphof g, x = O,andx = 1
Figure 7.5
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Area of a Region Between Two Curves

If £ and g are continuous on [a, b] and g(x) < f(x) for all x in [a, b], then the
area of the region bounded by the graphs of f and g and the vertical lines x = a
and x = b is

b
A= f L) — (] .

In Figure 7.1, the graphs of f and g are shown above the x-axis. This, however,
is not necessary. The same integrand [ f(x) — g(x)] can be used as long as f and g are
continuous and g(x) < f(x) for all x in the interval [a, b]. This result is summarized
graphically in Figure 7.4.

v v

a b
= - X
(x, fx) G f) |
flx) — g flr) — ()
o e E e e = = '
(x. g(x)) (x. g(x))
Figure 7.4

Representative rectangles are used throughout this chapter in various applications
of integration. A vertical rectangle (of width Ax) implies integration with respect to x,
whereas a horizontal rectangle (of width Ay) implies integration with respect to y.

EXAMPLE | Finding the Area of a Region Between Two Curves

Find the area of the region bounded by the graphs of y = x? + 2,y = —x,x = 0, and
x =1

Solution Let g(x) = —xand f(x) = x2 + 2. Then g(x) < f(x) for all x in [0, 1}, as
shown in Figure 7.5. So, the area of the representative rectangle is
AA =[f(x) — g]Ax
=[(x2+2) - (—x)]Ax

and the area of the region is
h 1
A= [ v - o= | 10+ 2~ o
W 0
5l 2 1
=|=+%+
[3 2 2x]o
1 1
=+ +
3 2 )
17,

6 L]
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L
-] -
(x, g(x))

-2

Region bounded by the graph of / and the
graph of g
Figure 7.6

g(x) =cosx

(%, f(x))

(x g(x))

f(x)=sinx

One of the regions bounded by the graphs of
the sine and cosine functions
Figure 7.7

Area of a Region Between Intersecting Curves

In Example 1, the graphs of f(x) = x? + 2 and g(x) = —x do not intersect, and the
values of a and b are given explicitly. A more common problem involves the area of
a region bounded by two intersecting graphs, where the values of a and » must be
calculated.

EXAMPLE 2 A Region Lying Between Two Intersecting Graphs

|
Find the area of the region bounded by the graphs of f(x) = 2 — x2 and g(x) = x.
Solution In Figure 7.6, notice that the graphs of f and g have two points of

intersection. To find the x-coordinates of these points, set f(x) and g(x) equal to each
other and solve for x.

2 —x2=x Set f(x) equal to g(x).
-x2—-x+2=0 Write in general form.
“-x+2x-1D=0 Factor.
x=—2orl Solve for x.

So, a = —2 and b = 1. Because g(x) < f(x) for all x in the interval [—2, 1], the
representative rectangle has an area of
AA = [f(x) - g)] Ax
=[2 - x? - x] Ax
and the arca of the region is
1

4= [(2—x2)—x]dx=[—

EXAMPLE 3 A Region Lying Between Two Intersecting Graphs

The sine and cosine curves intersect infinitely many times, bounding regions of equal
areas, as shown in Figure 7.7. Find the area of one of these regions.

Solution
sinx = cos x Set f(x) equal to g(x).
sin x
= Divide each side by cos x.
COS x
tanx = 1 Trigonometric identity
T 5w
X = Z or T, 0<Lx<27 Solve for x.

So, a = m/4 and b = 57/4. Because sinx > cosx for all x in the interval
[7/4, 5m/4], the area of the region is
Sirf4 Sm/4
AZJ [sinx—cosx]dx=[—cosx—sinx]
i /4

- 2\/§ E————



g =fly)  fn)<gl)

(=2,-8) -8

e
I R O

fx)=3x3 —x2 - 10x

On[—2,0],¢(x) < f(x),and on [0, 2],

f) < glx)
Figure 7.8
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If two curves intersect at more than two points, then to find the area of the region
between the curves, you must find all points of intersection and check to see which
curve is above the other in each interval determined by these points.

EXAMPLE 4 Curves That Intersect at More Than Two Points

Find the area of the region between the graphs of f(x) = 3x3> — x> — 10x and
glx) = —x* + 2x.

Solution Begin by setting f(x) and g(x) equal to each other and solving for x. This
yields the x-values at each point of intersection of the two graphs.

33 — x2 — 10x = —x% + 2x Set f(x) equal to g(x).
33— 12x=0 Write in general form.
Ix(x —2)(x+2)=0 Factor.
x=-2,0,2 Solve for .x.
So, the two graphs intersect when x = —2,0, and 2. In Figure 7.8, notice that

g(x) < f(x) on the interval [—2, 0]. However, the two graphs switch at the origin, and
f(x) < g(x) on the interval [0, 2]. So, you need two integrals—one for the interval
[—2, 0] and one for the interval [0, 2].

a= [ e - s+ [ s - s

= f (3x3 — 12x) dx + J (—3x3 + 12x) dx
-2 0

3x4 2:|0 [—3)64 2:IZ
[4 6x 2+ n + 6x .

—(12 = 24) + (=12 + 24) = 24 S

NOTE In Example 4, notice that you obtain an incorrect result if you integrate from —2 to 2.
Such integration produces

2

2
f [fx) — g)]dx = J (3x3 — 12x) dx = 0.
—2 ,
If the graph of a function of y is a boundary of a region, it is often convenient to
use representative rectangles that are horizontal and find the area by integrating with
respect to y. In general, to determine the area between two curves, you can use

X2
A= j [(top curve) — (bottom curve)] dx Vertical rectanges
X| - i
in variable x
Y2
A= [(right curve) — (left curve)] dy Horizontal rectangles
B ) A
in variable y

where (x,, y,) and (x,, y,) are either adjacent points of intersection of the two curves
involved or points on the specified boundary lines.

@ indicates that in the HM mathSpace® CD-ROM and the online Eduspace® system
for this text, you will find an Open Exploration, which further explores this example using the
computer algebra systems Maple, Mathcad, Mathematica, and Derive.
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CHAPTER 7

Applications of Integration

EXAMPLE 5 Horizontal Representative Rectangles

Find the area of the region bounded by the graphs of x = 3 — y2and x = y + 1.

Solution Consider

gy) =3 -y and f(y)=y+ 1

These two curves intersect when y = —2 and y = 1, as shown in Figure 7.9. Because
F(y) < g(y) on this interval, you have

AA =[g(y) —fWMIAy =[(B - y?) — (y + 1)] Ay.
So, the area is

A= [B=») -+ Dldy

gy =3-y*

ol Ax Ve s
-1,-2) (~1,-2) |
Horizontal rectangles (integration with Vertical rectangles (integration with respect
respect to y) to x)
Figure 7.9 Figure 7.10

In Example 5, notice that by integrating with respect to y you need only one
integral. If you had integrated with respect to x, you would have needed two integrals
because the upper boundary would have changed at x = 2, as shown in Figure 7.10.

Azf [(x—1)+\/3—x:|dx+J.3(\/3—x+\/3—x)dx

1
)6_2 (3 5 _1.}_\;3 I2 ) ?l(3 X _‘.} 372 |3
2 3/2 v L 32 L

|
=<2—2—§)—(%+1 ?) 2{(}}+2<§)
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Integration as an Accumulation Process

In this section, the integration formula for the area between two curves was developed
by using a rectangle as the representative element. For each new application in the
remaining sections of this chapter, an appropriate representative element will be con-
structed using precalculus formulas you already know. Each integration formula will
then be obtained by summing or accumulating these representative elements.

Known precalculus Representative New integration
formula element formula

For example, in this section the area formula was developed as follows.

A = (height)(width) AA = [f(x) — gx)] Ax A= J [f(x) — g(x)] dx

EXAMPLE 6 Describing Integration as an Accumulation Process

Find the arca of the region bounded by the graph of y = 4 — x? and the x-axis.
Describe the integration as an accumulation process.

Solution The area of the region is given by
2
A= J 4 — x?) dx.
-2

You can think of the integration as an accumulation of the areas of the rectangles
formed as the representative rectangle slides from x = —2 to x = 2, as shown in
Figure 7.11.

¥ ¥

¥
'
1

i J | 1 == X
-3 -2-1 | 1 2 3
-1 ~|

3 0
A:j 4—-xdx=0 A= (4—x2)dx=-35- A=j(4—x2)dx=?
L5 -2

A=f(4—x2)dx=9 A= @ —xHde=
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Exercises for Section 7.1

See www.CalcChat. com for worked-out solutions to odd-numbered exercises

In Exercises 1-6, set up the definite integral that gives the area
of the region.

1. f(x) = x* — 6x 2. fx) =224+ 20+ 1

6. flx) = (x—1)3
g) =x—1
5

-t

In Exercises 7-12, the integrand of the definite integral is a
difference of two functions. Sketch the graph of each function
and shade the region whose area is represented by the integral.

7. E[(x+1)—ﬂdx

8. N [(1—x% — (x2— 1)]dx

9. f [4(2*\'/3) - %] dx 10. f {(%3 - x) - ﬂ dx

/3 /4
11. j (2 — secx) dx 12. f (sec?x — cos x) dx
—/3 —/4

In Exercises 13 and 14, find the area of the region by integrating
(a) with respect to x and (b) with respect to y.

13. x =4 —?
x=y—2

14. y = x2
y=6—x

Think About It In Exercises 15 and 16, determine which value
best approximates the area of the region bounded by the graphs
of f and g. (Make your selection on the basis of a sketch of the
region and not by performing any calculations.)
15, f(x) = x + 1, g)=@x—1)?

(a) =2 (b) 2 (c) 10 (d) 4 (e) 8
16. f() =2 —3x, gl =2 Jx

@1l ®m6 (-3 (@3 ()4

In Exercises 17-32, sketch the region bounded by the graphs of
the algebraic functions and find the area of the region.
17. =%x3+2,y=x+l,x=0,x=2
18. y:—%x(x—S), y = IO—%x, x=2,x=38§
19, f(x) =x>—4x, gly)=0
20. fx) = —x2+4x+ 1, glx) =x+1
21 fx) =x2+2x+ 1, glx) =3x+3
22, flx) = —x>+4x+2, glxy =x+2
2. y=x, y=2—x, y=0
1

24.y=;2—, y=0, x=

1, x=5

25, flx) = V3x+ 1, glo) =x + 1

26, f) =Ix—1, gl) =x— 1

27. f0) =% gh) =y +2

28. f(y) =y(2 -y, gb) =~y

29. fM=»>+1 g»=0 y=-1, y=2

y
30. =, =0, y=3
) =5 s(») y
31. f(x):%O, x=0,y=2y=10
4

32, g(x)zz—_x, y=4, x=0



A’ In Exercises 33—42, (a) use a graphing utility to graph the

region bounded by the graphs of the equations, (b) find the area
of the region, and (c) use the integration capabilities of the
graphing utility to verify your results.
33, f(x) = x(x?* — 3x + 3), glx) =x?
M. fy=x*—2x+1 go)=—-2r x=1
5. y=x2—4x+3, y=3+4x—x?
36, y = x* — 2x%, y = 2x?
37, flx) = x* — 4% glx) =x*— 4
38, f(x) = x* — 4x?, glx) = x* — 4x
39. f(x) = 1/(1 + x?), glx) = 322
40. f(x) =6x/(x>+ 1), y=0, 0<x<3
41.y=m, y=%x+2, x=0
4-x
YV 4+

2. y=x y=0 x=4

In Exercises 43— 48, sketch the region bounded by the graphs of
the functions, and find the area of the region.

43. f(x) = 2sinx, glx) = tanx, —%T <x< g
44, f(x) = sinx, g(x) = cos 2x, —g <x< %T
45. f(x) = cosx, glx) =2 —cosx, 0 < x <27

TR
4 g

47, fx) =xe™, y=0, 0sx<1
48. f(x) = 3% glx) =2x + 1

46. f(x) = sec , glx) = (f - 4)x +4, x=0

¥ In Exercises 49-52, (a) use a graphing utility to graph the
region bounded by the graphs of the equations, (b) find the area
of the region, and (c) use the integration capabilities of the
graphing utility to verify your results.

49. f(x) =2sinx +sin2x, y=0, 0<x< 7

50. f(x) =2sinx +cos2x, y=0, O<x< 7

1
51. f(x)=;e'/", y=0 1<x<3

41nx

52. glx) = .

, y=0, x=5

ﬁ’ In Exercises 53-56, (a) use a graphing utility to graph the

region bounded by the graphs of the equations, (b) explain why
the area of the region is difficult to find by hand, and (c) use the
integration capabilities of the graphing utility to approximate
the area to four decimal places.

/.3
53. y = 4x_x,y=0,x=3

54, y= Jxe5, y=0, x=0, x=1
55. y==x% y=4dcosx

56. y=x%, y=J/3+tx
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In Exercises 57-60, find the accumulation function F. Then
evaluate F at each value of the independent variable and graph-
ically show the area given by each value of F.

57. F(x) = J: : e+ 1)dr (@ FO) () FQ) (o) F(6)
58, Fx) = f Lot RO RO © FO
59. Fla) = j cosay @ F-1) &) FO) @ F)
0. 0= [ aera @ren © 0 © A

In Exercises 61-64, use integration to find the area of the figure
having the given vertices.

61. (2, —3),(4,6),(6,1) 62. (0,0), (a,0), (b, c)

63. (0,2), (4,2), (0, —2),(—4,—-2)

64. (0,0), (1,2), (3, —2), (1, =3)

65. Numerical Integration Estimate the surface area of the golf
green using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

66. Numerical Integration Estimate the surface area of the oil
spill using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

In Exercises 67-70, set up and evaluate the definite integral that
gives the area of the region bounded by the graph of the function
and the tangent line to the graph at the given point.

(1,1) (-1 1)
1 1 2 1

Writing About Concepts

71. The graphs of y = x* — 2x2 + 1 and y = 1 — x? intersect
at three points. However, the area between the curves can

67. flx) = x3, 68. y = x> — 2x,

be found by a single integral. Explain why this is so, and
write an integral for this area.
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Writing About Concepts (continued)
72.

The area of the region bounded by the graphs of y = x3
and y = x cannot be found by the single integral
', (& — x) dx. Explain why this is so. Use symmetry to
write a single integral that does represent the area.

73. A college graduate has two job offers. The starting salary
for each is $32,000, and after 8 years of service each will
pay $54,000. The salary increase for each offer is shown in
the figure. From a strictly monetary viewpoint, which is the

better offer? Explain.

s D
= 60,000 - Offer2 . g 60 . Proposal 2
5 50,000+ v = 50+ » ",
S 40000 5 40 roposa
£ 30,000 4 Offer 1 S 2 30
& As
g 20,0001 S 20
& 10,000 '; 10

i e e o o S Tyt

2 4 6 8 2002 2006 2010
Year Year

Figure for 73 Figure for 74

74. A state legislature is debating two proposals for eliminating
the annual budget deficits by the year 2010. The rate of
decrease of the deficits for each proposal is shown in the
figure. From the viewpoint of minimizing the cumulative
state deficit, which is the better proposal? Explain.

In Exercises 75 and 76, find b such that the line y = b divides
the region bounded by the graphs of the two equations into two HU' 84.

regions of equal area.

75.y=9—x2, y=0 76. y =9 — |x

, y=0

In Exercises 77 and 78, find a such that the line x = a divides

81.

P{E’ 83.

R, =721 + 0.58¢
R, =721 + 0.45¢

82. R, =7.21 + 0.26t + 0.022
R, =721+ 0.1t + 0012

Modeling Data  The table shows the total receipts R and total
expenditures E for the Old-Age and Survivors Insurance Trust
Fund (Social Security Trust Fund) in billions of dollars. The
time ¢ is given in years, with ¢+ = 1 corresponding to 1991.
(Source: Social Security Administration)

t 1 2 I 3 4 5 | 6_

R | 2993 | 311.2 | 323.3 | 328.3 | 342.8 | 363.7

E 245.-6 2599 | 273.1 284.1.1 297.8 | 308.2
-t— _7 8 | 9“ [ 10 11

R | 3972 | 4248 4;;/.0 490.5 | 518.1

E | 322.1 | 3323 | 339.9 | 3583 37_75_

(a) Use a graphing utility to fit an exponential model to the
data for receipts. Plot the data and graph the model.

(b) Use a graphing utility to fit an exponential model to the
data for expenditures. Plot the data and graph the model.

(c) If the models are assumed to be true for the years 2002
through 2007, use integration to approximate the surplus
revenue generated during those years.

(d) Will the models found in parts (a) and (b) intersect?
Explain. Based on your answer and news reports about the
fund, will these models be accurate for long-term analysis?

Lorenz Curve Economists use Lorenz curves to illustrate the
distribution of income in a country. A Lorenz curve, ¥ = f(x),
represents the actual income distribution in the country. In this
model, x represents percents of families in the country and y
represents percents of total income. The model y = x represents
a country in which each family has the same income. The area

the region bounded by the graphs of the equations into two
regions of equal area.

77.y=x, y=4, x=0 78. y’ =4 —x, x=0

In Exercises 79 and 80, evaluate the limit and sketch the graph
of the region whose area is represented by the limit.

79. lim > (x; — x?) Ax, where x;, = i/n and Ax = 1/n
a0 =1
80. IIHITO 2 (4 — x2) Ax, where x, = —2 + (4i/n) and Ax = 4/n

i=1

Revenue In Exercises 81 and 82, two models R, and R, are
given for revenue (in billions of dollars per year) for a large
corporation. The model R, gives projected annual revenues
from 2000 to 2005, with ¢ = 0 corresponding to 2000, and R,
gives projected revenues if there is a decrease in the rate of
growth of corporate sales over the period. Approximate the total
reduction in revenue if corporate sales are actually closer to the
model R,.

between these two models, where 0 < x < 100, indicates a

country’s “income inequality.” The table lists percents of income

3o G

y for selected percents of families x in a country.

(a) Use a graphing utility to find a quadratic model for the

Lorenz curve,
(b) Plot the data and graph the model.

(c) Graph the model y = x. How does this model compare with

the model in part (a)?

(d) Use the integration capabilities of a graphing utility to
approximate the “income inequality.”

x 10 20 30 40 50
y | 335 6.07 9.17 | 13.39 | 1945
x 60 70 80 90

y | 28.03 | 39.77 | 55.28 | 75.12



85. Profit The chief financial officer of a company reports that
profits for the past fiscal year were $893,000. The officer pre-
dicts (hat profits for the next 5 years will grow at a continuous
annual rate somewhere between 3%% and 5%. Estimate the
cumulative difference in total profit over the 5 years based on
the predicted range of growth rates.

86. Area The shaded region in the figure consists of all points
whose distances from the center of the square are less than their
distances from the edges of the square. Find the area of the
region.

y ¥

3

Figure for 86 Figure for 87

87. Mechanical Design The surface of a machine part is the
region between the graphs of y, = |x| and y, = 0.08x2 + k
(see figure).

(a) Find k if the parabola is tangent to the graph of y,.
(b) Find the area of the surface of the machine part.

88. Building Design Concrete sections for a new building have
the dimensions (in meters) and shape shown in the figure.

¥y
§
(-5.5,0) o
\ | @‘A
g
ey
-6 -5 _4 _3 ; e e J
-1 I 2 3 4'_5 \-I——~ x
6
el =135
y=3 S5+x y=3 5—x (5.5.0)

(a) Find the area of the face of the section superimposed on the
rectangular coordinate system.

(b) Find the volume of concrete in one of the sections by
multiplying the area in part (a) by 2 meters.

(c) One cubic meter of concrete weighs 5000 pounds. Find the
weight of the section.

89. Building Design To decrease the weight and to aid in the
hardening process, the concrete sections in Exercise 88 often
are not solid. Rework Exercise 88 to allow for cylindrical
openings such as those shown in the figure.

1 | \y

gm gm
\| / 2
1wt 2m
i D v . I"'/-’l
—6/—5 -4 _3 2 |' - : | - .
(-5.5,0) 1 85 8 : \g-x
—l =l —
y=3 S+ux y=3 S5—x (5.5.0)

SECTION 7.1

Area of a Region Between Two Curves 455

True or False? In Exercises 90-92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

90. If the area of the region bounded by the graphs of f and g
is 1, then the area of the region bounded by the graphs of
h(x) = f(x) + C and k(x) = g(x) + Cis also 1.

b b
91. Iff [f&x) — gx)]dx = A, thenf [g) — fx)]dx = —A.

92. If the graphs of f and g intersect midway between x = a and
x = b, then

f [f(x) — glx)]dx = 0.

93. Area TFind the area between the graph of y = sinx and
1
the line segments joining the points (0, 0) and (%’T, —§> as

shown in the figure.
¥ v
A 2 y

" 2
X

hgt =1
a* b

Figure for 93 Figure for 94

94. Area Leta > Oand b > 0. Show that the area of the ellipse

2 2
22
a b?

is mab (see figure).

Putnam Exam Challenge

95, The horizontal line y = ¢ intersects the curve y = 2x — 3x% in
the first quadrant as shown in the figure. Find ¢ so that the areas
of the two shaded regions are equal.

¥y
A

| y=2x—3x3

A

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Rectangle

Axis of revolution

w

Disk

Volume of a disk: 77R2w
Figure 7.13

Applications of Integration

Volume: The Disk Method

* Find the volume of a solid of revolution using the disk method.
¢ Find the volume of a solid of revolution using the washer method.
¢ Find the volume of a solid with known cross sections.

The Disk Method

In Chapter 4 we mentioned that area is only one of the many applications of the
definite integral. Another important application is its use in finding the volume of a
three-dimensional solid. In this section you will study a particular type of three-
dimensional solid—one whose cross sections are similar. Solids of revolution are used
commonly in engineering and manufacturing. Some examples are axles, funnels, pills,
bottles, and pistons, as shown in Figure 7.12.

4 L) l!L

<

Solids of revolution
Figure 7.12

If a region in the plane is revolved about a line, the resulting solid is a solid of
revolution, and the line is called the axis of revolution. The simplest such solid is a
right circular cylinder or disk, which is formed by revolving a rectangle about an axis
adjacent to one side of the rectangle, as shown in Figure 7.13. The volume of such a
disk is

Volume of disk = (area of disk)(width of disk)

= 7R
where R is the radius of the disk and w is the width,

To see how to use the volume of a disk to find the volume of a general solid of
revolution, consider a solid of revolution formed by revolving the plane region in
Figure 7.14 about the indicated axis. To determine the volume of this solid, consider

a representative rectangle in the plane region. When this rectangle is revolved about
the axis of revolution, it generates a representative disk whose volume is

AV = wR?Ax.

Approximating the volume of the solid by n such disks of width Ax and radius R(x;)
produces

Volume of solid = » #[R(x;)]> Ax

Il
3
[\
=
)
S
D
=



NOTE In Figure 7.15, note that you
can determine the variable of integration
by placing a representative rectangle in
the plane region “perpendicular” to the
axis of revolution. If the width of the
rectangle is Ax, integrate with respect to
x, and if the width of the rectangle is Ay,
integrate with respect to y.
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Representative Axis of Representative
rectangle revolniiam disk

Plane region

R
x=a A ad x=b 1
Ax
Solid of ; b o
revolution LJ Approximation
Ax by n disks
Disk method
Figure 7.14

This approximation appears to become better and better as ||A]|— 0 (n — oo). So, you
can define the volume of the solid as

. b
Volume of solid = IIililmOﬂ-E [R(x)]?Ax = = f [R(x)]? dx.
- a

=1

Schematically, the disk method looks like this.

Known Precalculus Representative New Integration
Formula Element Formula
- e Solid of ievolution
olume of dis _ B
V= miow AV = alRG)P Ax vl WP
a

A similar formula can be derived if the axis of revolution is vertical.

The Disk Method

To find the volume of a solid of revolution with the disk method, use one of
the following, as shown in Figure 7.15.

Horizontal Axis of Revolution Vertical Axis of Revolution

Volume = V = f ’ [R(x)]? dx

a

Volume = V = J’d [R(y)]?dy

ver [ RGP dx)

'..&-:lj.-l —

Rix)

- C ;
: 5

Horizontal axis of revolution Vertical axis of revolution

Figure 7.15
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Cross sections are equilateral triangles.

y

-1 XL x
gly) = 1+2

Triangular base in xy-plane
Figure 7.25

Figure 7.26

EXAMPLE 6 Triangular Cross Sections
L}

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region
bounded by the lines

f@=1-2. g@=-1+3, ad x=0.

The cross sections perpendicular to the x-axis are equilateral triangles.

Solution The base and area of each triangular cross section are as follows.

Base = <1 = %) = (—1 + %) =2-x Length of base
Area = ? (base)2 Area of equilateral triangle
Alx) = %(2 — x)? Area of cross section

Because x ranges from 0 to 2, the volume of the solid is

V= LbA(x)dx = f:g(z — x)2dx

ﬁ[(z —Sx)slz) _ 23/5 _

4

EXAMPLE 7 An Application to Geometry
L]

Prove that the volume of a pyramid with a square base is V = %hB, where £ is the
height of the pyramid and B is the area of the base.

Solution  As shown in Figure 7.26, you can intersect the pyramid with a plane
parallel to the base at height y to form a square cross section whose sides are of length
b’. Using similar triangles, you can show that

b _h—y

by
b ; or b—h(h y)

where b is the length of the sides of the base of the pyramid. So,
b2
AG) = ()2 = 2500 = 2.
Integrating between 0 and % produces

(h "o
v=[ ana - [ Lo-ya
0 0

p? ("
= ﬁf (h — y)2dy
0
_ f??)[{h = .\ET
o (“l 3 0
I
B }:3( 3 )

= I!:B. B = b?

j M—



Exercises for Section 7.2
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, set up and evaluate the integral that gives the
volume of the solid formed by revolving the region about the
x-axis.

l.y=-—ux+1 2. y=4—x*

¥

4

3

2

|
|
|
R - X l }:

In Exercises 7-10, set up and evaluate the integral that gives the
volume of the solid formed by revolving the region about the
y-axis.

8. y= /16 — x?

7.y =x?

10. x = —y? + 4y

—t—t——t—t—x
| 12 3 4

In Exercises 11-14, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the given lines.

1. y= Jx, y=0, x=4
(a) the x-axis (b) the y-axis
(¢) thelinex =4  (d) thelinex =6
12, y=2x%, y=0, x=2
(b) the x-axis
(d) the linex = 2

(a) the y-axis

(¢c) the liney = 8
13, y=x% y=4dx —x?
(b) theliney = 6
14 y=6—2x—x% y=x+6
(b) the liney =3

(a) the x-axis

(a) the x-axis

In Exercises 15-18, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the line y = 4.

15. y=x, y=3, x=0

17. y = , y=0, x=0, x=3

18. v

Il
w
&
5]

Ry
A
|
i
(=)
IA
=

A

|

In Exercises 19-22, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the line x = 6.

19. y=x, y=0, y=4, x=6
20 y=6-—x, y=0, y=4, x=0
21, x=y?%, x=4

22. xy =6, y=2, y=6, x=6

In Exercises 23-30, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the x-axis.

23 =0, x=3

1
L y=——— y=0,
Ym v’ g
24 y=xJ4—x2, y=0



464 CHAPTER 7 Applications of Integration

25.y=i, y=0, x=1, x=4
26. y = > , y=0, x=0, x=28
x+1
27.y=e¢> y=0, x=0, x=1
28. y=e%2, y=0, x=0, x=4
29, y=x+1, y=—-x2+2x+5 x=0, x=3

30. y = Vx, y=—%x+4, x=0, x=38

In Exercises 31 and 32, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the y-axis.
3. y =302 —x),
32, y=9 — x2,

x=0

x =2,

y=0,
y =0, x=3

In Exercises 33-36, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the x-axis. Verify your results using the integration
capabilities of a graphing utility.

3. y=sinx, y=0, x=0, x=1

34.y=cosx,y=0,x=0,x=g
B.y=e!, y=0, x=1, x=2
36.y=e"2+e 72, y=0, x=-1, x=2

In Exercises 37-40, use the integration capabilities of a graph-
ing utility to approximate the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the x-axis.

37. y = e, y=0, x=0, x=2
38.y=Inx, y=0, x=1, x=3
39. y = 2arctan(0.2x), y=0, x=0, x=5

40. y = /2x, y=x2

Writing About Concepts

In Exercises 41 and 42, the integral represents the volume of
a solid. Describe the solid.

/2 4
41. wf sin® x dx 42, wf y*dy
0 2

Think About It 1In Exercises 43 and 44, determine which
value best approximates the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the x-axis. (Make your selection on the basis of a
sketch of the solid and not by performing any calculations.)

43. y=e 2 y=0, x=0, x=2

@3 (b) =5 (c) 10 (dy 7 (e) 20
44. y = arctanx, y=0, x=0, x=1
(a) 10 (b) % () 5 dy -6 (e)y 15

Writing About Concepts (continued)

45. A region bounded by the parabola y = 4x — x2 and the

46. The region in the figure is revolved about the indicated axes

x-axis is revolved about the x-axis. A second region bounded
by the parabola y = 4 — x2 and the x-axis is revolved about
the x-axis. Without integrating, how do the volumes of the
two solids compare? Explain.

and line. Order the volumes of the resulting solids from
least to greatest. Explain your reasoning.
(c) x=28

(a) x-axis (b) y-axis

¥

47,

48.

49.

50.

51.

52.

53.

If the portion of the line y = %x lying in the first quadrant is
revolved about the x-axis, a cone is generated. Find the volume
of the cone extending from x = 0 to x = 6.

Use the disk method to verify that the volume of a right circular

cone is %*n-rzh, where r is the radius of the base and 4 is the

height.

Use the disk method to verify that the volume of a sphere is

tard,

A sphere of radius r is cut by a plane 4 (k < r) units above the

equator. Find the volume of the solid (spherical segment) above

the plane.

A cone of height H with a base of radius r is cut by a plane

parallel to and A units above the base. Find the volume of the

solid (frustum of a cone) below the plane.

The region bounded by y = /x, y =0, x = 0, and x = 4 is

revolved about the x-axis.

(a) Find the value of x in the interval [0, 4] that divides the
solid into two parts of equal volume.

(b) Find the values of x in the interval [0, 4] that divide the
solid into three parts of equal volume.

Volume of a Fuel Tank A tank on the wing of a jet aircraft is

formed by revolving the region bounded by the graph of

y = éxzx/ 2 — x and the x-axis about the x-axis (see figure),

where x and y are measured in meters. Find the tank’s volume.
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HU' 54. Volume of a Lab Glass A glass container can be modeled by IDIV 58. Modeling Data A draftsman is asked to determine the

55.

e s.

Figure for 56

& 5.

revolving the graph of

_ [VOI® — 2252 T 109x + 222,
Y7295,

about the x-axis, where x and y are measured in centimeters.
Use a graphing utility to graph the function and find the volume
of the container.

0<x=< 115
115<x< 15

Find the volume of the solid generated if the upper half of the
ellipse 9x2 + 25y2 = 225 is revolved about (a) the x-axis to
form a prolate spheroid (shaped like a football), and (b) the
y-axis to form an oblate spheroid (shaped like half of a candy).

Figure for 55(a) Figure for 55(b)

Minimum Volume The arc of

X2
Y=

on the interval [0, 4] is revolved about the line y = b (see figure).
(a) Find the volume of the resulting solid as a function of b.

(b) Use a graphing utility to graph the function in part (a), and
use the graph to approximate the value of b that minimizes
the volume of the solid.

(¢) Use calculus to find the value of b that minimizes the
volume of the solid, and compare the result with the answer
to part (b).

Figure for 58

Water Depth in a Tank A tank on a water tower is a sphere of
radius 50 feet. Determine the depths of the water when the tank
is filled to one-fourth and three-fourths of its total capacity.
(Note: Use the zero or root feature of a graphing utility after
evaluating the definite integral.)

59.

60.

61.

amount of material required to produce a machine part (see
figure in first column). The diameters d of the part at equally
spaced points x are listed in the table. The measurements are
listed in centimeters.

x| O 1 2 3 4 5

d| 42 |38 (42|47 | 52|57

x| 6 7 8 9 10

d| 5854|4944 | 46

(a) Use these data with Simpson’s Rule to approximate the
volume of the part.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial through the points representing
the radius of the solid. Plot the data and graph the model.

(c) Use a graphing utility to approximate the definite integral
yielding the volume of the part. Compare the result with the
answer to part (a).

Think About It Match each integral with the solid whose
volume it represents, and give the dimensions of each solid.

(a) Right circular cylinder (b) Elipsoid
(c) Sphere (d) Right circular cone

h 5 5 h
) 77"[ <7> dx (i) f r2dx
Or OI; 2
Gity w| (V72 = x2)*dx Gv) 7w la/1 - 2 W o
b b2

— —

(e) Torus

 #f e+ =) - (k- vE= e

Cavalieri’s Theorem Prove that if two solids have equal
altitudes and all plane sections parallel to their bases and at
equal distances from their bases have equal areas, then the
solids have the same volume (see figure).

o -

e,
i

Area of R, = areaof R,

Find the volume of the solid whose base is bounded by the
graphs of y = x + 1 and y = x? — 1, with the indicated cross
sections taken perpendicular to the x-axis.

(a) Squares (b) Rectangles of height 1

.4-:"':.,’"" - d il rh—""
‘- -1 ll f

- - - - -r
2 X
X

y
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62. Find the volume of the solid whose base is bounded by the
circle

x>+ y2=4

with the indicated cross sections taken perpendicular to the
X-axis.

(a) Squares

‘-_"’-""-.- .

(b) Equilateral triangles

63. The base of a solid is bounded by y = x3, y = 0, and x = 1.
Find the volume of the solid for each of the following cross
sections (taken perpendicular to the y-axis): (a) squares,
(b) semicircles, (c) equilateral triangles, and (d) semiellipses
whose heights are twice the lengths of their bases.

64. Find the volume of the solid of intersection (the solid common

to both) of the two right circular cylinders of radius » whose
axes meet at right angles (see figure).

X

Two intersecting cylinders Solid of intersection

FOR FURTHER INFORMATION For more information on this
problem, see the article “Estimating the Volumes of Solid Figures
with Curved Surfaces” by Donald Cohen in Mathematics Teacher.
To view this article, go to the website www.matharticles.com.

65. A manufacturer drills a hole through the center of a metal
sphere of radius R. The hole has a radius r. Find the volume of
the resulting ring.

66. For the metal sphere in Exercise 65, let R = 5. What value of r
will produce a ring whose volume is exactly half the volume of
the sphere?

In Exercises 67-74, find the volume generated by rotating the
given region about the specified line.

0.5

67. R, aboutx =0 68. R, about x = 1
69. R, abouty = 0 70. R, abouty = 1
71. R, aboutx = 0 72. R;about x = 1
73. R, aboutx = 0 74. R, about x = 1

75. The solid shown in the figure has cross sections bounded by the
graph of |x|* + |y|? = 1, where | < a < 2.

(a) Describe the cross section whena = |1 and a = 2.

(b) Describe a procedure for approximating the volume of the
solid.

el +[yj =1 o+ =

' + 1y =1

76. Two planes cut a right circular cylinder to form a wedge. One
plane is perpendicular to the axis of the cylinder and the second
makes an angle of f degrees with the first (see figure).

(a) Find the volume of the wedge if # = 45°.

(b) Find the volume of the wedge for an arbitrary angle 6.
Assuming that the cylinder has sufficient length, how does
the volume of the wedge change as 6 increases from 0°
to 90°7

e

Figure for 76 Figure for 77
77. (a) Show that the volume of the torus shown is given by the

integral 81 Rf V2= y2dy, where R > r > 0,
0

(b) Find the volume of the torus.
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Volume: The Shell Method

¢ Find the volume of a solid of revolution using the shell method.
o Compare the uses of the disk method and the shell method.

The Shell Method

In this section, you will study an alternative method for finding the volume of a solid
of revolution. This method is called the shell method because it uses cylindrical
shells. A comparison of the advantages of the disk and shell methods is given later in
this section.

To begin, consider a representative rectangle as shown in Figure 7.27, where w is
the width of the rectangle, h is the height of the rectangle, and p is the distance
between the axis of revolution and the center of the rectangle. When this rectangle is
revolved about its axis of revolution, it forms a cylindrical shell (or tube) of thickness
w. To find the volume of this shell, consider two cylinders. The radius of the larger
cylinder corresponds to the outer radius of the shell, and the radius of the smaller
cylinder corresponds to the inner radius of the shell. Because p is the average radius
of the shell, you know the outer radius is p + (w/2) and the inner radius is

Axis of revolution

Figure 7.27

p — (w/2).
w

p+ E Outer radius

. E Inner radius

So, the volume of the shell is

Volume of shell = (volume of cylinder) — (volume of hole)

2 2
olp + 2~ ofp - 2

= 2mwphw

ll

= 2r(average radius)(height)(thickness).

You can use this formula to find the volume of a solid of revolution. Assume that
the plane region in Figure 7.28 is revolved about a line to form the indicated solid. If
you consider a horizontal rectangle of width Ay, then, as the plane region is revolved
about a line parallel to the x-axis, the rectangle generates a representative shell whose

h(y) volume is

=== Ay AV = 27 p(y)h(y)] Ay.
p(y){ 9

Plane region

You can approximate the volume of the solid by n such shells of thickness Ay, height
h(y,), and average radius p(y,).

Axis of
L e Volume of solid = 3 2 p(y)h(y)] Ay = 2> [ p(y)h(,)] Ay
——_ i=1 i=1
j A } This approximation appears to become better and better as A — 0 (n — o0). So,

the volume of the solid is

Volume of solid = lim 27 [p(y)h(y;)] Ay
laf-0 A&

13

. - o
Solid of revolution . 277_] [p(y)h(y)] dy.

Figure 7.28
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(a) Disk method

hx)=x2+1

CHAPTER 7

Axis of
revolution

Axis of
revolution

(b) Shell method

Figure 7.33

Applications of Integration

Often, one method is more convenient to use than the other. The following
example illustrates a case in which the shell method is preferable.

@wi D EXAMPLE 3 Shell Method Preferable

Find the volume of the solid formed by revolving the region bounded by the graphs of

y=x+1, y=0, x=0, and x=1

about the y-axis.

Solution In Example 4 in the preceding section, you saw that the washer method
requires two integrals to determine the volume of this solid. See Figure 7.33(a).

V= WL1(12—02)dy+wﬁ2[12—(m)2]dy
=7r£1dy+7rf(2—y)dy

1 272
w[y] + 77[2)} . y?}
0 I

7T+7T<4_2—2+%)

Apply washer method,

Simplity.

Integrate.

_ 37
2

In Figure 7.33(b), you can see that the shell method requires only one integral to find
the volume.

V= 27'rf p(x)h(x) dx

Apply shell method.
1
. 27rf x(x2 4+ 1) dx
0
4 27!
x =27 I:XZ + %:lo Integrate.
3
= 2 —
”(4)
_ 3w
2

Suppose the region in Example 3 were revolved about the vertical line x = 1.
Would the resulting solid of revolution have a greater volume or a smaller volume than
the solid in Example 3? Without integrating, you should be able to reason that the
resulting solid would have a smaller volume because “more” of the revolved region
would be closer to the axis of revolution. To confirm this, try solving the following
integral, which gives the volume of the solid.

I
V:27Tf (1 -—x&*+ Ddx p)=1—x
)

FOR FURTHER INFORMATION To learn more about the disk and shell methods, see the article
“The Disk and Shell Method” by Chatles A. Cable in The American Mathematical Monthly. To
view this article, go to the website www.matharticles.com.
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—4 —"5 —2 —l 1
(a) Disk method

(b) Shell method
Figure 7.35

¥ Axis of
revolution

/

W) =x3+x+1-1

Figure 7.36
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EXAMPLE 4 Volume of a Pontoon

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed
by rotating the graph of

=1—-— -4 <x<4
y 16’ X
about the x-axis, where x and y are measured in feet. Find the volume of the pontoon.

Solution Refer to Figure 7.35(a) and use the disk method as follows.

Apply disk method.

* x2  x*
— . T implify.
Wj4<l 3 256>dx Simplify.
X s
= l:x - EI-— ES_O]_4 Integrate.
= %7—7 ~ 13.4 cubic feet

Try using Figure 7.35(b) to set up the integral for the volume using the shell method.

Does the integral seem more complicated? e —

For the shell method in Example 4, you would have to solve for x in terms of y
in the equation
y =1— (x2/16).

Sometimes, solving for x is very difficult (or even impossible). In such cases you
must use a vertical rectangle (of width Ax), thus making x the variable of integration.
The position (horizontal or vertical) of the axis of revolution then determines the
method to be used. This is shown in Example 5.

EXAMPLE 5 Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of
y=x+x+t1,y=1landx= 1 about the line x = 2, as shown in Figure 7.36.

Solution  In the equation y = x* + x + 1, you cannot easily solve for x in terms of
v. (See Section 3.8 on Newton’s Method. ) Therefore, the variable of integration must
be x. and you should choose a vertical representative rectangle. Because the rectangle
is parallel to the axis of revolution, use the shell method and obtain

b 1
V= 27rf ph(x)dx = 27| 2 — 0 +x+ 1 —1)dx  Apply shell method.
d 0

1

1
= 2'7TJ (—x* + 23 — x> + 2x) dx Simplify.
4]

¥ o xt % ) !
= = B — = ]
27T[ 5 > 3 X ]0 Integrate
1 1 1
. —=+ - ==+
277( st573 1)
15
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Exercises for Section 7.3

In Exercises 1-12, use the shell method to set up and evaluate
the integral that gives the volume of the solid generated by
revolving the plane region about the y-axis.

1L.y=x 2.y=1-x

y b
i

S.y=x% y=0, x=2
6.y=%x2,y=0, x=6

7. y=x% y=4dx — x2

8. y=4-x2 y=0

9. y=4x—x2, x=0, y=4
10 y=2x, y=4, x=0

11, y = e 2, y=0, x=0, x=1
21T
smxl 50

12.y= X - y=0, x=0, x=17
L x=0

In Exercises 13-20, use the shell method to set up and evaluate
the integral that gives the volume of the solid generated by
revolving the plane region about the x-axis.

13. y=x 14. y =2 — x

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

15. y ==

16. x + y2 = 16

FS N T T,

7

2 -3
—i -7

17. y=x%, x=0, y=8 18. y=x% x=0, y=9
9. x+y=4, y=x, y=0

20 y=Vx+2, y=x y=0

In Exercises 21-24, use the shell method to find the volume of
the solid generated by revolving the plane region about the
given line,

21. y = x% y =4x — x2, about the line x = 4

22. y =x% y =4x — x2, about the line x = 2

23, y =4x — x%, y =0, about the line x = 5

24. y=/x, y=0, x=4, about the line x = 6

In Exercises 25 and 26, decide whether it is more convenient to
use the disk method or the shell method to find the volume of
the solid of revolution. Explain your reasoning. (Do not find the
volume.)

25. (y—2pr=4—x

26. y =4 — ¢*

In Exercises 27-30, use the disk or the shell method to find the
volume of the solid generated by revolving the region bounded
by the graphs of the equations about each given line.

27.y=x% y=0, x=2

(a) the x-axis (b) the y-axis (c) the line x = 4

10

28.y=;, y=0, x=1, x=5

(a) the x-axis (b) the y-axis
29, x'2 4 Y2 = g2 5 =, y=10
(b) the y-axis

(c) the line y = 10

(a) the x-axis (c) the line x = a
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30. x2/3 + y¥3 = 4?3, a > 0 (hypocycloid) 41. Machine Part A solid is generated by revolving the region
bounded by y = 2x? and y = 2 about the y-axis. A hole,
centered along the axis of revolution, is drilled through this
solid so that one-fourth of the volume is removed. Find the

Writing About Concepts diameter of the hole.
42. Machine Part A solid is generated by revolving the region

31. Consider a solid that is generated by revolving a plane
d y bounded by y = /9 — x? and y = 0 about the y-axis. A hole,

region about the y-axis. Describe the position of a repre- . . . . .
sentative rectangle when using (a) the shell method and (b) centered along the axis of revolution, is drilled through this

the disk method to find the volume of the solid. solid so that one-third of the volume is removed. Find the
diameter of the hole.

(a) the x-axis (b) the y-axis

32. The region in the figure is revolved about the indicated axes
and line. Order the volumes of the resulting solids from 43. Volume of a Torus A torus is formed by revolving the region
least to greatest. Explain your reasoning. bounded by the circle x2 + y? = 1 about the line x = 2 (see

figure). Find the volume of this “doughnut-shaped” solid.

(Hint: The integral f ]_] V1 — x2 dx represents the area of a

semicircle.)
Yy

(a) x-axis (b) y-axis )y x=5

)

i
-1 1 2
]

44. Volume of a Torus Repeat Exercise 43 for a torus formed by
revolving the region bounded by the circle x2 + y? = r? about
the line x = R, where r < R.

5 2
33, Trf (x -= ) dx = 27,-] y[5 - (y2 + D]dy 45. (a) Use differentiation to verify that
1 0

In Exercises 33 and 34, give a geometric argument that
explains why the integrals have equal values.

2 4 fxsinxdx=sinx—xcosx+c.
34. 'n'f [16 — 2y)2]dy = 27 j x@) dx
0

0 (b) Use the result of part (a) to find the volume of the solid

generated by revolving each plane region about the y-axis.

® y Gy v

i y=2sinx

HU‘ In Exercises 35-38, (a) use a graphing utility to graph the plane
region bounded by the graphs of the equations, and (b) use the
integration capabilities of the graphing utility to approximate
the volume of the solid generated by revolving the region about
the y-axis.

35. x43 + y¥3 =1,x =0,y = 0, first quadrant

36. y=J1—-x,y=0,x=0

y=sinx i
y=-sinx

= Yy 0V (r — 62 v = - —
3. y=Jb -2 —-6%y=0x=2x=6 46. (a) Use differentiation to verify that
2
8. y= T+e7?) " 0,x=1x=3 fxcosxdx =cosx + xsinx + C.

(b) Use the result of part (a) to find the volume of the solid
generated by revolving each plane region about the y-axis.
(Hint: Begin by approximating the points of intersection.)

Think About It In Exercises 39 and 40, determine which value
best approximates the volume of the solid generated by
revolving the region bounded by the graphs of the equations

about the y-axis. (Make your selection on the basis of a sketch @ ‘ (i) ; y=4cosx

of the solid and not by performing any calculations.)

39. y=2¢5y=0,x=0,x=2
(@) 3 ® -2 ©4 @715 ()15

40. y=tanx,y=0,x=0’x:7zr
@35 ®-F ©8 (@10 e) 1
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In Exercises 47-50, the integral represents the volume of a solid
of revolution. Identify (a) the plane region that is revolved and
(b) the axis of revolution.

47.

49.

51.

52.

53.

54.

2
271'[ x3dx
0

6
27Tf (y+2)V6 —ydy  50. 27
0

!
48. 2’7Tf y — y¥2dy
1)I
4 — x)e¥ dx
0
Volume of a Segment of a Sphere et a sphere of radius r be

cut by a plane, thereby forming a segment of height 2. Show
that the volume of this segment is 37h2(3r — h).

Volume of an Ellipsoid Consider the plane region bounded
by the graph of

o)~

where a > 0 and b > 0. Show that the volume of the ellipsoid

. : . 4md b
formed when this region revolves about the y-axis is —7—3-—

Exploration  Consider the region bounded by the graphs of
y = ax",y = ab", and x = 0 (see figure).

y
|

(a) Find the ratio Rl(n) of the area of the region to the area of
the circumscribed rectangle.

(b) Find lim R,(n) and compare the result with the area of the
H—r20
circumscribed rectangle.

(¢) Find the volume of the solid of revolution formed by
revolving the region about the y-axis. Find the ratio R,(n) of
this volume to the volume of the circumscribed right
circular cylinder.

(d) Find lim R,(n) and compare the result with the volume of
=20
the circumscribed cylinder.

(e) Use the results of parts (b) and (d) to make a conjecture about
the shape of the graph of y = ax”" (0 < x < b) as n—oco0.

Think About It Match each integral with the solid whose
volume it represents, and give the dimensions of each solid.

(b) Torus (c) Sphere
(e) Ellipsoid

(i) 27 f hx<1 - f) dx
5 r
/ b = -V_z
(iii) 2’7TJ- 27— x2dx (iv) 277] 2ax \/1 - E dx
¢} [}]
v) 27'rf (R — )2/ = 57) dx

(a) Right circular cone

(d) Right circular cylinder
(i) 277'[ hx dx
0

55.

f¥ s.

Volume of a Storage Shed A storage shed has a circular base
of diameter 80 feet (see figure). Starting at the center, the inte-
rior height is measured every 10 feet and recorded in the table.

x 0 [10] 20| 30] 40

Height | 50 | 45 | 40 | 20 | ©

(a) Use Simpson’s Rule to approximate the volume of the shed.

(b) Note that the roof line consists of two line segments. Find
the equations of the line segments and use integration to
find the volume of the shed.

Height

' X

T T T ¥
10 20 30 40 50

Distance from center

Modeling Data A pond is approximately circular, with a
diameter of 400 feet (see figure). Starting at the center, the depth
of the water is measured every 25 feet and recorded in the table.

x 0 | 25| 50| 75 (100 ]| 125|150| 175|200

20119 | 19| 17 | 15

14

Depth |6l o

(a) Use Simpson’s Rule to approximate the volume of water in
the pond.

(b) Use the regression capabilities of a graphing utility to find
a quadratic model for the depths recorded in the table. Use
the graphing utility to plot the depths and graph the model.

(c) Use the integration capabilities of a graphing utility and the

model in part (b) to approximate the volume of water in the

pond.

Use the result of part (c) to approximate the number of
gallons of water in the pond if 1 cubic foot of water is
approximately 7.48 gallons.

)

Depth

.l I I T ]
50 100 150

Distance from center



57. Consider the graph of y* = x(4 — x)* (see figure). Find the
volumes of the solids that are generated when the loop of this
graph is revolved around (a) the x-axis, (b) the y-axis, and
(c) the line x = 4.

y2=xX(x+5)

I A I
36 9121518

Figure for 58

Figure for 57
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58. Consider the graph of y* = x*(x + 5) (see figure). Find the
volume of the solid that is generated when the loop of this
graph is revolved around (a) the x-axis, (b) the y-axis, and (c)
the line x = —35.

59. 1.et V, and V, be the volumes of the solids that result when the
plane region bounded by y=1/x, y=0, x= %, and
x=c (c > i) is revolved about the x-axis and y-axis, respec-
tively. Find the value of ¢ for which V| = V.

Section Project:  Saturn

The Oblateness of Saturn  Saturn is the most oblate of the nine
planets in our solar system. Its equatorial radius is 60,268
kilometers and its polar radius is 54,364 kilometers. The color
enhanced photograph of Saturn was taken by Voyager 1. In the
photograph, the oblateness of Saturn is clearly visible.

(a) Find the ratio of the volumes of the sphere and the oblate
ellipsoid shown below.

(b) If a planet were spherical and had the same volume as Saturn,
what would its radius be?

Computer model of “spherical Saturn,” whose equatorial radius is
equal to its polar radius. The equation of the cross section passing
through the pole is

X2+ y? = 60,2682

Computer model of “oblate Saturn,” whose equatorial radius is
greater than its polar radius. The equation of the cross section
passing through the pole is

2 2

x
60,2682

=l
M 54,3642
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Bettmann/Corbis

CHRisTIAN HUYGENS (1629-1695)

The Dutch mathematician Christian Huygens
who invented the pendulum clock, and James

>

Gregory (1638—1675), a Scottish mathemati-

cian, both made early contributions to the

problem of finding the length of a rectifiable

curve.

[
[
I
|
|
|
L

X

a

Figure 7.37

y=fx)

s=lengthof \

curve from |

atob

o -

Applications of Integration

Arc Length and Surfaces of Revolution

* Find the arc length of a smooth curve.
¢ Find the area of a surface of revolution.

Arc Length

In this section, definite integrals are used to find the arc lengths of curves and the areas
of surfaces of revolution. In either case, an arc (a segment of a curve) is approximated
by straight line segments whose lengths are given by the familiar Distance Formula

d= Jlt —x)2 + [y, — »)2

A rectifiable curve is one that has a finite arc length. You will see that a sufficient
condition for the graph of a function f to be rectifiable between (a, f(a)) and (b, (b))
is that f’ be continuous on [a, b]. Such a function is continuously differentiable on
[a, b], and its graph on the interval [a, b] is a smooth curve.

Consider a function y = f(x) that is continuously differentiable on the interval
[a, b]. You can approximate the graph of f by n line segments whose endpoints are
determined by the partition

Aa=x< X < X< "< x,=b

as shown in Figure 7.37. By letting Ax, = x; —x;_; and Ay, =y, — y,_,, you can
approximate the length of the graph by

s~2\/(x ,ﬁl) +()’i_)’i—1)2
= 3 Va7 Gy

o 3
,f1+ i—ﬁj (A

This approximation appears to become better and better as |A|| =0 (n — c0). So, the
length of the graph is

n Ayl
IIAII—> Z v b

Because f/(x) exists for each x in (x,., 1» %), the Mean Value Theorem guarantees the
existence of ¢; in (x,_, x;) such that

f(x,‘) _f(x,'—l) =f’((;’.)(xl. - xi—l)
Ayi — £
A_xi _f(ci)-

Because f”is continuous on [a, b], it follows that ~/1 + [ f(x)]? is also continuous
(and therefore integrable) on [a, b], which implies that

||A]| E 1+ [f(e)]?(Ax)
:f 1+ [ dx

||M- I[M:

where s is called the arc length of f between a and b.



f)=mx+b

The arc length of the graph of f from

(1, 1) to (x5, y,) is the same as the standard
Distance Formula.

Figure 7.38
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Definition of Arc Length

Let the function given by y = f(x) represent a smooth curve on the interval
[a, b]. The arc length of f between a and b is

b
5= j V14 [ )] dx.

Similarly, for a smooth curve given by x = g(y), the arc length of g between ¢
and d is

d
s = f V1 + [g' )] dy.

Because the definition of arc length can be applied to a linear function, you can
check to see that this new definition agrees with the standard Distance Formula for the
length of a line segment. This is shown in Example 1.

EXAMPLE | The Length of a Line Segment

Find the arc length from (x,, y,) to (x,, y,) on the graph of f(x) = mx + b, as shown
in Figure 7.38.

Solution Because

o pry) = 22N
m =) =22

it follows that

5= j ol fx)]? dx Formula for arc length
i)
Xy = _ 2
f \/ 1+ (y—z — L) gy
x, 2o T &y

; *2
[JCE = -‘L’L)E + {__‘)"3 = }"|}2 . .
= - 5 {x) Integrate and simplify,
(X —%)%

= \/(xz . xl)z + (y2 - y1)2

which is the formula for the distance between two points in the plane. I

TECHNOLOGY Definite integrals representing arc length often are very
difficult to evaluate. In this section, a few examples are presented. In the next
chapter, with more advanced integration techniques, you will be able to tackle more
difficult arc length problems. In the meantime, remember that you can always use a
numerical integration program to approximate an arc length. For instance, use the
numerical integration feature of a graphing utility to approximate the arc lengths in
Examples 2 and 3.
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F(x)

| —
Ax
The amount of force changes as an object
changes position (Ax).
Figure 7.49

Bettmann/Corbis

EMILIE DE BRETEUIL (1706—1749)

Another major work by de Breteuil was the
translation of Newton's“Philosophiae
Naturalis Principia Mathematica”into
French. Her translation and commentary
greatly contributed to the acceptance of
Newtonian science in Europe,

Applications of Integration

Work Done by a Variable Force

In Example 1, the force involved was constant. If a variable force is applied to an
object, calculus is needed to determine the work done, because the amount of force
changes as the object changes position. For instance, the force required to compress a
spring increases as the spring is compressed.

Suppose that an object is moved along a straight line from x = ato x = b by a
continuously varying force F(x). Let A be a partition that divides the interval [a, b]
into n subintervals determined by

a4 =Xy <X <Xy<+:<x,=b
and let Ax; = x; — x;_,. For each i, choose c, such that x,_, < ¢; < x;. Then at ¢, the
force is given by F(c,). Because F is continuous, you can approximate the work done
in moving the object through the ith subinterval by the increment

AW, = F(c,;) Ax,

as shown in Figure 7.49. So, the total work done as the object moves from a to b is
approximated by

W~ 3 aw,

i=1
= D F(c;) Ax,.
i=1
This approximation appears to become better and better as ||A||— 0 (n — o0). So, the
work done is

W = ||£1||IEO ,»; F(c,.) Ax;

= f bF (x) dx.

Definition of Work Done by a Variable Force

If an object is moved along a straight line by a continuously varying force
F(x), then the work W done by the force as the object is moved from x = a
tox =bis

1

Vil & A

i=1

b
= f F(x) dx.

The remaining examples in this section use some well-known physical laws. The
discoveries of many of these laws occurred during the same period in which calculus
was being developed. In fact, during the seventeenth and eighteenth centuries, there
was little difference between physicists and mathematicians. One such physicist-
mathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing the
work of many other scientists, including Newton, Leibniz, Huygens, Kepler, and
Descartes. Her physics text Institutions was widely used for many years.
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The following three laws of physics were developed by Robert Hooke
(1635-1703), Isaac Newton (1642-1727), and Charles Coulomb (1736-1806).

1. Hooke’s Law: The force F required to compress or stretch a spring (within its
elastic limits) is proportional to the distance d that the spring is compressed or
stretched from its original length. That is,

F = kd

where the constant of proportionality k (the spring constant) depends on the
specific nature of the spring.

2. Newton’s Law of Universal Gravitation: The force F of attraction between two
particles of masses m, and m, is proportional to the product of the masses and
inversely proportional to the square of the distance d between the two particles.
That is,

If m,and m, are given in grams and 4 in centimeters, £ will be in dynes for a value

of k = 6.670 x 1078 cubic centimeter per gram-second squared.

R —— 3. Coulomb’s Law: The force between two charges ¢, and g, in a vacuum is

The work done in compressing the proportional to the product of the charges and inversely proportional to the square
spring in Example 2 from x = 3 of the distance d between the two charges. That is,

inches to x = 6 inches is 3375

inch-pounds. Should the work done q.9

] g ] i F=pH2

in compressing the spring from x = 0 2

inches to x = 3 inches be more than,
the same as, or less than this?

Explain. If g, and g, are given in electrostatic units and d in centimeters, ' will be in dynes

for a value of k = 1.

EXAMPLE 2 Compressing a Spring

A force of 750 pounds compresses a spring 3 inches from its natural length of 15
inches. Find the work done in compressing the spring an additional 3 inches.

Solution By Hooke’s Law, the force F(x) required to compress the spring x units
(from its natural length) is F(x) = kx. Using the given data, it follows that F(3) =
750 = (k)(3) and so k = 250 and F(x) = 250x, as shown in Figure 7.50. To find the
increment of work, assume that the force required to compress the spring over a small
increment Ax is nearly constant. So, the increment of work is

AW = (force)(distance increment) = (250x) Ax.

Because the spring is compressed from x = 3 to x = 6 inches less than its natural
length, the work required is

b 6
W= J- F(x) dx = f 250x dx Formula for work
a 3

6
= 125x2] = 4500 — 1125 = 3375 inch-pounds.
3
Note that you do not integrate from x = 0 to x = 6 because you were asked to
determine the work done in compressing the spring an additional 3 inches (not
Figure 7.50 including the first 3 inches). —
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Not drawn to scale

4000

Figure 7.51

Ax

Applications of Integration

i o o I
X

4800

EXAMPLE 3 Moving a Space Module into Orbit

A space module weighs 15 metric tons on the surface of Earth. How much work is
done in propelling the module to a height of 800 miles above Earth, as shown in
Figure 7.51?7 (Use 4000 miles as the radius of Earth. Do not consider the effect of air
resistance or the weight of the propellant.)

Solution Because the weight of a body varies inversely as the square of its distance
from the center of Earth, the force F(x) exerted by gravity is

C

F (x) = ; C is the constant of proportionality.

Because the module weighs 15 metric tons on the surface of Earth and the radius of
Earth is approximately 4000 miles, you have

=G

(4000)?
240,000,000 = C.

So, the increment of work is
AW = (force)(distance increment)

_ 240,000,000

Ax.
2

Finally, because the module is propelled from x = 4000 to x = 4800 miles, the total
work done is

b 4800
W= f F(x) dx = f ML‘{‘LU{)‘- dx Formula for work
a 4000 X
— 240,000,000]“800
= — 27 Te Integrate.
X 4000

= —50,000 + 60,000
= 10,000 mile-tons
= 1.164 x 10'" foot-pounds.

In the C-G-S system, using a conversion factor of 1 foot-pound = 1.35582 joules, the
work done is

W= 1.578 x 10" jOllleS. ——

The solutions to Examples 2 and 3 conform to our development of work as the
summation of increments in the form

AW = (force)(distance increment) = (F)(Ax).
Another way to formulate the increment of work is

AW = (force increment)(distance) = (AF)(x).

This second interpretation of AW is useful in problems involving the movement of
nonrigid substances such as fluids and chains.



Figure 7.52
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EXAMPLE 4 Emptying a Tank of Oil

A spherical tank of radius 8 feet is half full of oil that weighs 50 pounds per cubic
foot. Find the work required to pump oil out through a hole in the top of the tank.

Solution Consider the oil to be subdivided into disks of thickness Ay and radius x,
as shown in Figure 7.52. Because the increment of force for each disk is given by its
weight, you have
AF = weight
_ (50 pounds
cubic foot
= 50(wx%Ay) pounds.

) (volume)

For a circle of radius 8 and center at (0, 8), you have
x2+ (y — 8)2 = 82
x? = 16y — y?
and you can write the force increment as
AF = 50(mx2Ay)
= 507(16y — y?) Ay.

In Figure 7.52, note that a disk y feet from the bottom of the tank must be moved a
distance of (16 — y) feet. So, the increment of work is

AW = AF(16 — y)
= 507r(16y — y*) Ay(16 — y)
= 507 (256y — 32y% + y%) Ay.
Because the tank is half full, y ranges from O to 8, and the work required to empty the
tank is
8
W= f 50m(256y — 32y2 + y3) dy
0

418
= 50#[128)}2 - %ﬁ + y—]

4 1o
_ 50”(11,;64)

=~ 589,782 foot-pounds. e

To estimate the reasonableness of the result in Example 4, consider that the
weight of the oil in the tank is

1 SN Y
( 2)(volume) (density) = 5 ( 3 78 )(50)
=~ 53,616.5 pounds.
Lifting the entire half-tank of oil 8 feet would involve work of 8(53,616.5) =~ 428,932

foot-pounds. Because the oil is actually lifted between 8 and 16 feet, it seems reason-
able that the work done is 589,782 foot-pounds.
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EXAMPLE 5 Lifting a Chain

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much
work is required to raise one end of the chain to a height of 20 feet so that it is fully
extended, as shown in Figure 7.537

Solution Imagine that the chain is divided into small sections, each of length Ay.
Then the weight of each section is the increment of force

5 pounds

AF = (weight) = ( foot

)(Iength) = 5Ay.

Because a typical section (initially on the ground) is raised to a height of y, the incre-
ment of work is

AW = (force increment)(distance) = (5 Ay)y = 5y Ay.

Work required to raise one end of  the chain Because y ranges from 0 to 20, the total work is
Figure 7.53

20 2720
W= f Sydy = SL] = M = 1000 foot-pounds.
0 0

2 2 I

In the next example you will consider a piston of radius r in a cylindrical casing,
as shown in Figure 7.54. As the gas in the cylinder expands, the piston moves and
work is done. If p represents the pressure of the gas (in pounds per square foot) against
the piston head and V represents the volume of the gas (in cubic feet), the work
increment involved in moving the piston Ax feet is

bt AW = (force)(distance increment) = F(Ax) = p(wr?) Ax = p AV.
Work done by expanding gas So, as the volume of the gas expands from V, to V|, the work done in moving the
Figure 7.54 piston is
Vl
W= f pdv.
VO

Assuming the pressure of the gas to be inversely proportional to its volume, you have
p = k/V and the integral for work becomes

v,

"k
ve b

vV

EXAMPLE 6 Work Done by an Expanding Gas

A quantity of gas with an initial volume of 1 cubic foot and a pressure of 500 pounds
per square foot expands to a volume of 2 cubic feet. Find the work done by the gas.
(Assume that the pressure is inversely proportional to the volume.)

Solution Because p = k/V and p = 500 when V = 1, you have k = 500. So, the

work is
v
W= EdV
1A v
2
500
_ j % 4y

2

= 500 ln|V|] ~ 346.6 foot-pounds.

1 C—



Exercises for Section 7.5
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

Constant Force

In Exercises 1-4, determine the work done by

the constant force.

1. A 100-pound bag of sugar is lifted 10 feet.
2. An electric hoist lifts a 2800-pound car 4 feet.

3. A force of 112 newtons is required to slide a cement block

4 meters in a construction project.

4. The locomotive of a freight train pulls its cars with a constant

force of 9 tons a distance of one-half mile.

Writing About Concepts

5. State the definition of work done by a constant force.
6. State the definition of work done by a variable force.

7. The graphs show the force F, (in pounds) required to move

8. Verify your answer to Exercise 7 by calculating the work for

an object 9 feet along the x-axis. Order the force functions
from the one that yields the least work to the one that yields
the most work without doing any calculations. Explain your
reasoning.

(@ F b F
i i FZ
P 201
6 Fi
4l
2...
i s i . .
2 4 6 8
© F @ r
4_. 4 L
34 3+ F,=vx
2mn i 2

- :

2 4 6 8 ’

1
6 8

=

-
2 4

each force function.

Hooke’s Law In Exercises 916, use Hooke’s Law to determine
the variable force in the spring problem.

9.

10.

11.

A force of 5 pounds compresses a 15-inch spring a total of
4 inches. How much work is done in compressing the spring
7 inches?

How much work is done in compressing the spring in Exercise
9 from a length of 10 inches to a length of 6 inches?

A force of 250 newtons stretches a spring 30 centimeters. How
much work is done in stretching the spring from 20 centimeters
to 50 centimeters?

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A force of 800 newtons stretches a spring 70 centimeters on a
mechanical device for driving fence posts. Find the work done
in stretching the spring the required 70 centimeters.

A force of 20 pounds stretches a spring 9 inches in an exercise
machine. Find the work done in stretching the spring 1 foot
from its natural position.

An overhead garage door has two springs, one on each side of
the door. A force of 15 pounds is required to stretch each spring
1 foot. Because of the pulley system, the springs stretch only
one-half the distance the door travels. The door moves a total of
8 feet and the springs are at their natural length when the door
is open. Find the work done by the pair of springs.

Eighteen foot-pounds of work is required to stretch a spring 4
inches from its natural length. Find the work required to stretch
the spring an additional 3 inches.

Seven and one-half foot-pounds of work is required to com-
press a spring 2 inches from its natural length. Find the work
required to compress the spring an additional one-half inch.

Propulsion Neglecting air resistance and the weight of the
propellant, determine the work done in propelling a five-ton
satellite to a height of

(a) 100 miles above Earth.
(b) 300 miles above Earth.

Propulsion Use the information in Exercise 17 to write the
work W of the propulsion system as a function of the height A
of the satellite above Earth. Find the limit (if it exists) of W as
h approaches infinity.

Propulsion Neglecting air resistance and the weight of the
propellant, determine the work done in propelling a 10-ton
satellite to a height of

(a) 11,000 miles above Earth.
(b) 22,000 miles above Earth.

Propulsion A lunar module weighs 12 tons on the surface of
Earth. How much work is done in propelling the module from
the surface of the moon to a height of 50 miles? Consider the
radius of the moon to be 1100 miles and its force of gravity to
be one-sixth that of Earth.

Pumping Water A rectangular tank with a base 4 feet by 5
feet and a height of 4 feet is full of water (see figure). The water
weighs 62.4 pounds per cubic foot. How much work is done in
pumping water out over the top edge in order to empty (a) half
of the tank? (b) all of the tank?
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22. Think About It Explain why the answer in part (b) of
Exercise 21 is not twice the answer in part (a).

23. Pumping Water A cylindrical water tank 4 meters high with
a radius of 2 meters is buried so that the top of the tank is 1
meter below ground level (see figure). How much work is done
in pumping a full tank of water up to ground level? (The water
weighs 9800 newtons per cubic meter.)

W
s ;t_Gr_Ouzld level
-5 . T Ay
I

Figure for 23 Figure for 24

24. Pumping Water Suppose the tank in Exercise 23 is located on
a tower so that the bottom of the tank is 10 meters above the
level of a stream (see figure). How much work is done in filling
the tank half full of water through a hole in the bottom, using
water from the stream?

25. Pumping Water An open tank has the shape of a right circular
cone (see figure). The tank is 8 feet across the top and 6 feet
high. How much work is done in emptying the tank by pumping
the water over the top edge?

y y
4\— 3/y\ I~ 2_»'
3
9-
1
Fy ]/r\
Lt :
Ao T
3 X
Figure for 25 Figure for 28

26. Pumping Water Water is pumped in through the bottom of
the tank in Exercise 25. How much work is done to fill the tank

(a) to a depth of 2 feet?
(b) from a depth of 4 feet to a depth of 6 feet?

27. Pumping Water A hemispherical tank of radius 6 feet is
positioned so that its base is circular. How much work is
required to fill the tank with water through a hole in the base if
the water source is at the base?

28. Pumping Diesel Fuel The fuel tank on a truck has
trapezoidal cross sections with dimensions (in feet) shown in
the figure. Assume that an engine is approximately 3 feet above
the top of the fuel tank and that diesel fuel weighs approxi-
mately 53.1 pounds per cubic foot. Find the work done by the
fuel pump in raising a full tank of fuel to the level of the engine.

Pumping Gasoline In Exercises 29 and 30, find the work done
in pumping gasoline that weighs 42 pounds per cubic foot.
(Hint: Evaluate one integral by a geometric formula and the
other by observing that the integrand is an odd function.)

29. A cylindrical gasoline tank 3 feet in diameter and 4 feet long
is carried on the back of a truck and is used to fuel tractors.
The axis of the tank is horizontal. The opening on the tractor
tank is 5 feet above the top of the tank in the truck. Find the
work done in pumping the entire contents of the fuel tank into
a tractor.

30. The top of a cylindrical storage tank for gasoline at a service
station is 4 feet below ground level. The axis of the tank is
horizontal and its diameter and length are 5 feet and 12 feet,
respectively. Find the work done in pumping the entire contents
of the full tank to a height of 3 feet above ground level.

Lifting a Chain In Exercises 31-34, consider a 15-foot chain
that weighs 3 pounds per foot hanging from a winch 15 feet
above ground level. Find the work done by the winch in winding
up the specified amount of chain.

31. Wind up the entire chain.

32. Wind up one-third of the chain.

33. Run the winch until the bottom of the chain is at the 10-foot
level.

34. Wind up the entire chain with a 500-pound load attached (o it.

Lifting a Chain In Exercises 35 and 36, consider a 15-foot
hanging chain that weighs 3 pounds per foot. Find the work
done in lifting the chain vertically to the indicated position.

35. Take the bottom of the chain and raise it to the 15-foot level,
leaving the chain doubled and still hanging vertically (see
figure).

15-2y

36. Repeat Exercise 35 raising the bottom of the chain to the
12-foot level.

Demolition Crane 1In Exercises 37 and 38, consider a demoli-
tion crane with a 500-pound ball suspended from a 40-foot cable
that weighs 1 pound per foot.

37. Find the work required to wind up 15 feet of the apparatus.
38. Find the work required to wind up all 40 feet of the apparatus.



Boyle’s Law  In Exercises 39 and 40, find the work done by the
gas for the given volume and pressure. Assume that the pressure
is inversely proportional to the volume. (See Example 6.)

39. A quantity of gas with an initial volume of 2 cubic feet and a
pressure of 1000 pounds per square foot expands to a volume
of 3 cubic feet.

40. A quantity of gas with an initial volume of | cubic foot and a
pressure of 2500 pounds per square foot expands to a volume
of 3 cubic feet.

41. Electric Force Two electrons repel each other with a force
that varies inversely as the square of the distance between them.
One electron is fixed at the point (2, 4). Find the work done in
moving the second electron from (=2, 4) to (1, 4).

de’ 42, Modeling Data The hydraulic cylinder on a woodsplitter has

a four-inch bore (diameter) and a stroke of 2 feet. The hydraulic
pump creates a maximum pressure of 2000 pounds per square
inch. Therefore, the maximum force created by the cylinder is
2000(7r2%) = 80007 pounds.

(a) Find the work done through one extension of the cylinder
given that the maximum force is required.

(b) The force exerted in splitting a piece of wood is variable.
Measurements of the force obtained when a piece of wood
was split are shown in the table. The variable x measures
the extension of the cylinder in feet, and F is the force in
pounds. Use Simpson’s Rule to approximate the work done
in splitting the piece of wood.
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x 0 3 2 (

Wik
Wl
[\

F(x) | 0 | 20,000 | 22,000 | 15,000 | 10.000 | 5000 | O

Table for 42(b)

(c) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data. Plot the data
and graph the model.

(d) Use the model in part (c) to approximate the extension of
the cylinder when the force is maximum.

(e) Use the model in part (c) to approximate the work done in
splitting the piece of wood.

PP' Hydraulic Press TIn Exercises 43—46, use the integration

capabilities of a graphing utility to approximate the work done
by a press in a manufacturing process. A model for the variable
force F (in pounds) and the distance x (in feet) the press moves
is given.

Force Interval
43. F(x) = 1000[1.8 — In(x + 1}] 0<x<5
e — 1
. X} = <x<
44. F(x) 0 0<x<4
45. F(x) = 100x /125 — x* 0<x<5
46. F(x) = 1000 sinh x 0<x<2

Section Project:  Tidal Energy

Tidal power plants use “tidal energy” to produce electrical energy.
To construct a tidal power plant, a dam is built to separate a basin
from the sea. Electrical energy is produced as the water flows back
and forth between the basin and the sea. The amount of “natural
energy” produced depends on the volume of the basin and the tidal
range—the vertical distance between high and low tides. (Several
natural basin have tidal ranges in excess ot 15 feet; the Bay of
Fundy in Nova Scotia has a tidal range of 53 feet.)

o

ooy il
Y= 40,000

(a) Consider a basin with a rectangular base, as shown in the
figure. The basin has a tidal range of 25 feet, with low tide
corresponding to y = 0. How much water does the basin hold
at high tide?

(b) The amount of energy produced during the filling (or the
emptying) of the basin is proportional to the amount of work
required (o fill (or empty) the basin. How much work is
required to fill the basin with seawater? (Use a seawater
density of 64 pounds per cubic foot.)

Francois Gohier/Photo Researchers
Francois Gohier/Photo Researchers, Inc.

The Bay of Fundy in Nova Scotia has an extreme tidal range, as
displayed in the greatly contrasting photos above.

FOR FURTHER INFORMATION For more information on tidal
power, see the article “LaRance: Six Years of Operating a Tidal
Power Plant in France” by J. Cotillon in Water Power Magazine.




496

CHAPTER 7

Applications of Integration

' Moments, Centers of Mass, and Centroids

¢ Understand the definition of mass.

¢ Find the center of mass in a one-dimensional system.
¢ Find the center of mass in a two-dimensional system.
¢ Find the center of mass of a planar lamina.

® Use the Theorem of Pappus to find the volume of a solid of revolution.

Mass

In this section you will study several important applications of integration that are
related to mass. Mass is a measure of a body’s resistance to changes in motion, and is
independent of the particular gravitational system in which the body is located.
However, because so many applications involving mass occur on Earth’s surface, an
object’s mass is sometimes equated with its weight. This is not technically correct.
Weight is a type of force and as such is dependent on gravity. Force and mass are
related by the equation

Force = (mass)(acceleration).

The table below lists some commonly used measures of mass and force, together with
their conversion factors.

System of Measure of

Measurement Mass Measure of Force

u.s. Slug Pound = (slug)(ft/sec?)
International Kilogram Newton = (kilogram)(m/sec?)
C-G-S Gram Dyne = (gram)(cm/sec?)
Conversions:

1 pound = 4.448 newtons 1 slug = 14.59 kilograms
1 newton = 0.2248 pound 1 kilogram = 0.06852 slug
1 dyne = 0.000002248 pound 1 gram = 0.00006852 slug
1 dyne = 0.00001 newton 1 foot = 0.3048 meter

EXAMPLE I Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.

Solution Using 32 feet per second per second as the acceleration due to gravity

produces

Mass =

force
acceleration

1 pound

Force = (mass)(acceleration)

32 feet per second per second

= 0.03125

pound

foot per second per second
= 0.03125 slug.

Because many applications involving mass occur on Earth’s surface, this amount of
mass is called a pound mass.



The seesaw will balance when the left and the
right moments are equal.
Figure 7.55
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Center of Mass in a One-Dimensional System

You will now consider two types of moments of a mass—the moment about a point
and the moment about a line. To define these two moments, consider an idealized
situation in which a mass m is concentrated at a point. If x is the distance between this
point mass and another point P, the moment of m about the point P is

Moment = mx

and x is the length of the moment arm.

The concept of moment can be demonstrated simply by a seesaw, as shown in
Figure 7.55. A child of mass 20 kilograms sits 2 meters to the left of fulcrum P, and
an older child of mass 30 kilograms sits 2 meters to the right of P. From experience,
you know that the seesaw will begin to rotate clockwise, moving the larger child
down. This rotation occurs because the moment produced by the child on the left is
less than the moment produced by the child on the right.

Left moment = (20)(2) = 40 kilogram-meters
Right moment = (30)(2) = 60 kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger
child moved to a position % meters from the fulcrum, the seesaw would balance,
because each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin
corresponds to the fulcrum, as shown in Figure 7.56. Suppose several point masses are
located on the x-axis. The measure of the tendency of this system to rotate about the
origin is the moment about the origin, and it is defined as the sum of the n products
m; X;.

My =mx, +myx, +- -+ mgx,
R ] (S0 W AL, ) W x
) *3 0 i) Y-t i
If myx, + myx, + -+« + m,x, = 0, the system is in equilibrium.
Figure 7.56

If M, is 0, the system is said to be in equilibrium.

For a system that is not in equilibrium, the center of mass is defined as the point
% at which the fulcrum could be relocated to attain equilibrium. If the system were
translated X units, each coordinate x; would become (x,. — X), and because the moment
of the translated system is 0, you have

n n n

Y, milx, — %) = Y mx; - Y, mx =0.
=1 =1 =1
Solving for X produces

n

m;x; -
7 = = _ moment of system about origin
% total mass of system
> m;
=1

If mx, + myx, + - + - + m,x, = 0, the system is in equilibrium.
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Moments and Center of Mass: One-Dimensional System

Let the point masses m,, m,, . . ., m, be located at x,, x,, . . ., x,.
1. The moment about the origin is M, = mx, + myx, + - - - + mx,.
. M .
2. The center of mass is X = —% where m =m, + m, + - - - + m, is the
m

total mass of the system.

EXAMPLE 2 The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.57.

U]

{10)—————+—+—( 15 }+————C)—+——+—10)—+—+—==
5 4 3 =2 -1 0 1 2 3 4 s 6 71 8§ 9
Figure 7.57

Solution The moment about the origin is
My = mx; + myx, + myx; + myx,
10(—5) + 15(0) + 5(4) + 10(7)

=-50+0+20+70

I

= 40.
Because the total mass of the system is m = 10 + 15 + 5 + 10 = 40, the center of
mass is
m 40 ' 211

NOTE  In Example 2, where should you locate the fulcrum so that the point masses will be in
equilibrium?

Rather than define the moment of a mass, you could define the moment of a force.
In this context, the center of mass is called the center of gravity. Suppose that a
system of point masses m;, m,, . . ., m, is located at Xy, Xy, . . ., X, Then, because
force = (mass)(acceleration), the total force of the system is

F=ma+ma+ - - -+ma
= ma.
The torque (moment) about the origin is
Ty = (ma)x, + (mya)x, + - - - + (m,a)x,
= Mya
and the center of gravity is

L _ My My

=3
F ma m

So, the center of gravity and the center of mass have the same location.
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In a two-dimensional system, there is a

moment about the y-axis, M, and a moment
about the x-axis, M.

Figure 7.58
y
my=2
® 3 my=9
(-5,3) 2 -t |\'
©,0) T, “2)
1t
-5 -4 -3 -2 -1 1 2 3 4
_.1 " m. ? 6
-2 ®
=3 3,-2)
Figure 7.59
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Center of Mass in a Two-Dimensional System

You can extend the concept of moment to two dimensions by considering a system of
masses located in the xy-plane at the points (x,,y,), (x, ¥5), . . ., (x,, ¥,), as shown in
Figure 7.58. Rather than defining a single moment (with respect to the origin), two
moments are defined—one with respect to the x-axis and one with respect to the
y-axis.

Moments and Center of Mass: Two-Dimensional System

Let the point masses m,,m,, . . ., m, be located at (x, y,), (x2, ), . . -» (%, ¥,)-
1. The moment about the y-axis is M, = mx; + myx, + - -+ + m,x,.
2. The moment about the x-axis is M, = my, + m,y, + - - -+ m,y,

3. The center of mass (%, y) (or center of gravity) is

_ M _ M,
X=— and y=—
m m

where m = m, + m, + - - - + m, is the total mass of the system.

The moment of a system of masses in the plane can be taken about any horizontal
or vertical line. In general, the moment about a line is the sum of the product of the
masses and the directed distances from the points to the line.

Moment = m,(y, — b) + my(y, — b) + - -
—a) + mylx, —a) + - -

-+ m"(y" - b) Horizontal line y = b

Moment = m,(x, -+ m(x, — a) Veticallinex = a

EXAMPLE 3 The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses m, = 6, m, = 3, m; = 2, and

m, = 9, located at
(3, —2),(0,0),(—5, 3), and 4,2)

as shown in Figure 7.59.

Solution

m =6 +3 + 2 + 9 =20 Mass

My =6(3) + 3(00) + 2(—=5) +9(4) = 44 Moment about y-axis
M, = 6(—-2) + 3(0) + 23) +9(2) =12 Moment about x-axis
So,
. M, 44 11
X = —=— =
m 20 5
and
M 12 3

X

Y= m T2 5

. (L3
and so the center of mass is (g, '5‘).
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You can think of the center of mass (%, 7)
of a lamina as its balancing point. For a cir-
cular lamina, the center of mass is the center
of the circle. For a rectangular lamina, the
center of mass is the center of the rectangle.
Figure 7.60

Ax i
() '

(CH5 D)

T 85)

a X, b

Planar lamina of uniform density p
Figure 7.61

Applications of Integration

Center of Mass of a Planar Lamina

So far in this section you have assumed the total mass of a system to be distributed at
discrete points in a plane or on a line. Now consider a thin, flat plate of material of
constant density called a planar lamina (see Figure 7.60). Density is a measure of
mass per unit of volume, such as grams per cubic centimeter. For planar laminas,
however, density is considered to be a measure of mass per unit of area. Density is
denoted by p, the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina of uniform density p, bounded by
the graphs of y = f(x), y = g(x), and a < x < b, as shown in Figure 7.61. The mass
of this region is given by

m = (density)(arca)

. f /6 — g0
= pA

where A is the area of the region. To find the center of mass of this lamina, partition
the interval [a, b] into n subintervals of equal width Ax. Let x; be the center of the ith
subinterval. You can approximate the portion of the lamina lying in the ith subinterval
by a rectangle whose height is & = f(x,) — g(x,). Because the density of the rectangle
is p, its mass is

m; = (density)(area)

. fl)[f(xi) ~ 8] fﬁ'

Density  Height Width

Now, considering this mass to be located at the center (x, y,) of the rectangle, the
directed distance from the x-axis to (x;, y;) is y; = [f(x;) + g(x,)]/2. So, the moment
of m; about the x-axis is

Moment = (mass)(distance)

=iy

I

pLIx) — gt a P850 |

Summing the moments and taking the limit as n— co suggest the definitions below.

‘ Moments and Center of Mass of a Planar Lamina

Let f and g be continuous functions such that f(x) > g(x) on [a, b], and
consider the planar lamina of uniform density p bounded by the graphs of
y=fx),y=gkx),anda < x < b.

1. The moments about the x- and y-axes are
b
x) + glx
m= o [ [P st - sna

M, = p f A6 — gl d

: : M}’ . Mx
2. The center of mass (x, y) is given by X = o andy = Py where

m = p [°[ f(x) — g(x)] dx is the mass of the lamina.




oy

fx)=4 -x?

Figure 7.62

Center of mass:

U8 )

The center of mass is the balancing point.
Figure 7.63
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EXAMPLE 4 The Center of Mass of a Planar Lamina

Find the center of mass of the lamina of uniform density p bounded by the graph of
f(x) = 4 — x? and the x-axis.

Solution Because the center of mass lies on the axis of symmetry, you know that
% = 0. Moreover, the mass of the lamina is

P fz (4 — x%) dx

3
il

Il
o
1
N
=
|
WA,
| E——]
| [ o8]
N

To find the moment about the x-axis, place a representative rectangle in the region, as
shown in Figure 7.62. The distance from the x-axis to the center of this rectangle is

fx) _4-—x*

T 2
Because the mass of the representative rectangle is
pflx) Ax = p(4 — x%) Ax

you have

24 42
M =pf ok (4 — x?) dx

2
=BJ (16 — 8x2 + x*) dx

2 )
= Bl:lﬁx - 8_x3 + 'x_silz
2 3 5],
_ 256p
15

and y is given by

__ M, _256p/15 _8,
YT T 320/3 5

So, the center of mass (the balancing point) of the lamina is (0, %), as shown in
Figure 763 E—

The density p in Example 4 is a common factor of both the moments and the
mass, and as such divides out of the quotients representing the coordinates of the
center of mass. So, the center of mass of a lamina of uniform density depends only on
the shape of the lamina and not on its density. For this reason, the point

(X, y) Center of mass or centroid

is sometimes called the center of mass of a region in the plane, or the centroid of the
region. In other words, to find the centroid of a region in the plane, you simply assume
that the region has a constant density of p = 1 and compute the corresponding center
of mass.
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W

fx)=4-x2 gxX)=x+2

X(1,3)
J) + ()
2

X

I~ ST | fx) - g

Figure 7.64

EXPLORATION

Cut an irregular shape from a piece
of cardboard.

a. Hold a pencil vertically and move
the object on the pencil point until
the centroid is located.

b. Divide the object into representa-
tive elements. Make the necessary
measurements and numerically
approximate the centroid.
Compare your result with the
result in part (a).

(a) Original region

r e

g 6.1
L]

5 1) |

‘(2-5)-
4 x

| 1 2 3 4 5 ¢

(b) The centroids of the three rectan gles
Figure 7.65

AT

Applications of Integration

EXAMPLE 5 The Centroid of a Plane Region
e

Find the centroid of the region bounded by the graphs of f(x) =4 — x2 and
gx) =x+ 2.

Solution The two graphs intersect at the points (—2,0) and (1, 3), as shown in
Figure 7.64. So, the area of the region is

A=f}mwfwm=ﬁ;rw—wm=§

The centroid (¥, y) of the region has the following coordinates.

1 1
Tc=%f x[(4—x2)—(x+2)]dx:§f (=x® — x2 + 2x) dx
-2 =2
2 x* 3 211 1
_9[ d g H| ==
y:%_[ [(LL;(M—‘[(4—x2)—(x+2)]dx
_2 >
21\ (! 2 2
=3\3 (—x2+ x4+ 6)(—x% — x + 2) dx
-2
[
=3 (x* — 9x2 — 4x + 12) dx
-2
A A ]1 _ 12
—9[5 87 2x +12x_2—5.
So, the centroid of the region is (%, 7) = (—3, ). —_—

For simple plane regions, you may be able to find the centroids without resorting
to integration.

EXAMPLE 6 The Centroid of a Simple Plane Region
R
Find the centroid of the region shown in Figure 7.65(a).

Solution By superimposing a coordinate system on the region, as shown in Figure
7.65(b), you can locate the centroids of the three rectangles at

(%%) (%%), and (5, 1).

Using these three points, you can find the centroid of the region.
A =areaofregion=3+3 +4 =10

_ (1/2)B3) + (5/2)(3) + (5)4) _ 29 _

& 10 0~ 2?
S B2 + (/20 + 0@ _10_ |
10 10

So, the centroid of the region is (2.9, 1).

NOTE  In Example 6, notice that (2.9, 1) is not the “average” of (%, %), (%, %), and (5, 1).



Centroid of B

The volume V is 247 rA, where A is the area
of region R.
Figure 7.66

EXPLORATION
Use the shell method to show that the
volume of the torus is given by

3
V=f 4xJ/1 — (x — 2)*dx.
I

Evaluate this integral using a graph-
ing utility. Does your answer agree
with the one in Example 77
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Theorem of Pappus

The final topic in this section is a useful theorem credited to Pappus of Alexandria (ca.
300 a.D.), a Greek mathematician whose eight-volume Mathematical Collection is a
record of much of classical Greek mathematics. The proof of this theorem is given in
Section 14.4.

THEOREM 7.1 The Theorem of Pappus

Let R be a region in a plane and let L be a line in the same plane such that L
does not intersect the interior of R, as shown in Figure 7.66. If r is the distance
between the centroid of R and the line, then the volume V of the solid of revo-
lution formed by revolving R about the line is

V=2mrA

where A is the area of R. (Note that 2777 is the distance traveled by the centroid
as the region is revolved about the line.)

The Theorem of Pappus can be used to find the volume of a torus, as shown in
the following example. Recall that a torus is a doughnut-shaped solid formed by
revolving a circular region about a line that lies in the same plane as the circle (but
does not intersect the circle).

EXAMPLE 7 Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.67(a), which was formed by revolving
the circular region bounded by

x—22+y*=1

about the y-axis, as shown in Figure 7.67(b).

Centroid

Torus

(@) (b)
Figure 7.67

Solution In Figure 7.67(b), you can see that the centroid of the circular region is
(2,0). So, the distance between the centroid and the axis of revolution is r = 2.
Because the area of the circular region is A = r, the volume of the torus is

V=2mwrA
= 2m(2)(m)
= 4q2
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Exercises for Section 7.6

In Exercises 1-4, find the center of mass of the point masses
lying on the x-axis.
Lm =6m=3m=35
X = =5x=1x=3
2.m =7, my=4,m;=3m =8
X ==-3x=-2x=5x=6
Iom=1m=1m=1m=1m=1
X =T,%=8x =12,x,= 15, x5 = 18
4omy = 12,my =1, my=6,m, =3, ms = 11
X ==6,x%=—4x=-2,x=0x=238
5. Graphical Reasoning

(a) Translate each point mass in Exercise 3 to the right five
units and determine the resulting center of mass.

(b) Translate each point mass in Exercise 4 to the left three
units and determine the resulting center of mass.

6. Conjecture Use the result of Exercise 5 to make a conjecture
about the change in the center of mass that results when each
point mass is translated k units horizontally.

Statics Problems In Exercises 7 and 8, consider a beam of
length L with a fulcrum x feet from one end (see figure). There
are objects with weights W, and W, placed on opposite ends of
the beam. Find x such that the system is in equilibrium.

W,

I =— T 14

X + L—x
7. Two children weighing 50 pounds and 75 pounds are going to

play on a seesaw that is 10 feet long.

8. In order to move a 550-pound rock, a person weighing 200
pounds wants to balance it on a beam that is 5 feet long.

In Exercise 9-12, find the center of mass of the given system of
point masses.

%[ 5 1 3
Gpy) | 22 | (=31 | (1,-4)

10. . 10 2 5
(xl’yl) (1’ _1) (Sv 5) (—4> O)

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

11.

m; 3 4
Gpy) | (=2,-3) | (5,5)
m; 2 1 6
Gpy) | 7,1 | 0,00 | (=3,0)
12 m; 12 6 D 15
Gpy) | 2.3) | (-1,5) | (689) 2,-2)

In Exercises 13-24, find M,, M,, and (,y) for the laminas of
uniform density p bounded by the graphs of the equations.

13.y=Vxy=0x=4
14.y=%x2,y=0,x=2

15. y =22y =3

16. y= Jx,y=x

17. y= —x2 +4x+ 2,y=x+2
18.y=\/)_c+1,y=%x+1

19. y=x*3y=0,x=28§

20. y=x*y=4
2

2l. x =4~y x =

22. x =2y —y%x =
23. x = —y,x =2y — y2
2. x=y+2,x=y2

In Exercises 25-28, set up and evaluate the integrals for finding
the area and moments about the x- and y-axes for the region
bounded by the graphs of the equations. (Assume p = 1.)

25. y=x%Ly=x
26.y=i,y=0,l$x£4

27. y=2x+4,y=0,0<x<3
28. y=x*—4,y=0

H" In Exercises 29-32, use a graphing utility to graph the region

bounded by the graphs of the equations. Use the integration
capabilities of the graphing utility to approximate the centroid
of the region.

29. y = 10x/125 — 2%,y =0

30. y=xe /%, y=0,x=0,x=4

31. Prefabricated End Section of a Building
y=53400 — x2,y =0

32. Witch of Agnesi
y=8/(x*+4),y=0x=-2,x=2



In Exercises 33-38, find and/or verify the centroid of the
common region used in engineering.

33.

3.

35.

36.

S

Triangle Show that the centroid of the triangle with vertices
(—a,0), (a, 0), and (b, ¢) is the point of intersection of the
medians (see figure).

y D/
i

[ @0

(b, c) (a+b,0

-

| y

(-4, 0) (a, 0) @0)

Figure for 33 Figure for 34

Parallelogram  Show that the centroid of the parallelogram
with vertices (0, 0), (a, 0), (b, ¢), and (a + b, ¢) is the point of
intersection of the diagonals (see figure).

Trapezoid Tind the centroid of the trapezoid with vertices
(0, 0), (0, @), (¢, b), and (¢, 0). Show that it is the intersection of
the line connecting the midpoints of the parallel sides and the
line connecting the extended parallel sides, as shown in the
figure.

i

0, a)
r

—f X

Figure for 35 Figure for 36

Semicircle TFind the centroid of the region bounded by the
graphs of y = </r> — x> and y = 0 (see figure).

Semiellipse  Find the centroid of the region bounded by the

b
graphs of y = PR a? — x?> and y = O (see figure).

1 Parabolic spandrel
1 i /

L,
[4
__ziijgf———"-nh\\i:l _ Zx__lz
. = X =4 - X
—a a
Figure for 37 Figure for 38

38. Parabolic Spandrel Find the centroid of the parabolic

spandrel shown in the figure.

SECTION 7.6

39.

40.

fdl”' 41.
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Moments, Centers of Mass, and Centroids

Graphical Reasoning Consider the region bounded by the
graphs of y = x? and y = b, where b > 0.

(a) Sketch a graph of the region.
(b) Use the graph in part (a) to determine ¥. Explain.

(c) Set up the integral for finding M,. Because of the form of the
integrand, the value of the integral can be obtained without
integrating. What is the form of the integrand and what is the
value of the integral? Compare with the resuit in part (b).

b
(d) Use the graph in part (a) to determine whether y > 5 or

b
y < X Explain.

(e) Use integration to verify your answer in part (d).

Graphical and Numerical Reasoning Consider the region
bounded by the graphs of y = x**and y = b, where b > 0 and
n is a positive integer.

(a) Set up the integral for finding M,. Because of the form of
the integrand, the value of the ‘integral can be obtained
without integrating. What is the form of the integrand and
what is the value of the integral? Compare with the result in
part (b).

b
(b) Isy > Eory < —l;—? Explain.

(¢) Use integration to find ¥ as a function of n.

(d) Use the result of part (c) to complete the table.

ﬂ

’ |

n 1 2 3

(e) Find limy.

n—eo

(f) Give a geometric explanation of the result in part (e).

Modeling Data The manufacturer of glass for a window in a
conversion van needs to approximate its center of mass. A coor-
dinate system is superimposed on a prototype of the glass (see
figure). The measurements (in centimeters) for the right half of
the symmetric piece of glass are shown in the table.

x| 0 | 10]20]30 40‘

0 |

y |30 | 29|26 20

(a) Use Simpson’s Rule to approximate the center of mass of
the glass.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data.

(c) Use the integration capabilities of a graphing utility and the
model to approximate the center of mass of the glass.
Compare with the result in part (a).

A

10-$
U i o
—40 20 | 20 40
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H’-' 42. Modeling Data  The manufacturer of a boat needs to approx-

imate the center of mass of a section of the hull. A coordinate
system is superimposed on a prototype (see figure). The
measurements (in feet) for the right half of the symmetric
prototype are listed in the table.

x 0 0.5 1.0 1.5 2

I | 150 | 145 | 1.30 | 0.99 0

d | 050 | 048 | 043 | 033 0

(a) Use Simpson’s Rule to approximate the center of mass of
the hull section.

(b) Use the regression capabilities of a graphing utility to find
fourth-degree polynomial models for both curves shown in
the figure. Plot the data and graph the models.

(¢) Use the integration capabilities of a graphing utility and the
model to approximate the center of mass of the hull section.
Compare with the result in part (a).

In Exercises 43-46, introduce an appropriate coordinate
system and find the coordinates of the center of mass of the
planar lamina. (The answer depends on the position of the
coordinate system.)

43.T 4. ~|>
T @ ) —— e [

le—— ) —— | el

e — e —— N ———|

(—DD

ool~3

I

I|<—2—>|”

47. Find the center of mass of the lamina in Exercise 43 if the
circular portion of the lamina has twice the density of the
square portion of the lamina.

48. Find the center of mass of the lamina in Exercise 43 if the
square portion of the lamina has twice the density of the
circular portion of the lamina.

In Exercises 49-52, use the Theorem of Pappus to find the
volume of the solid of revolution.

49. The torus formed by revolving the circle (x — 5)2 + y2 = 16
about the y-axis

50. The torus formed by revolving the circle x* + (y — 3)2 = 4
about the x-axis

51. The solid formed by revolving the region bounded by the
graphs of y = x, y = 4, and x = 0 about the x-axis

52. The solid formed by revolving the region bounded by the
graphs of y = 2/x — 2,y = 0, and x = 6 about the y-axis

Writing About Concepts
53. Let the point masses m,, m,, . . ., m, be located at (x,, y,),
(3, ¥2), - - ., (x,, y,). Define the center of mass (%, ).

54. What is a planar lamina? Describe what is meant by the
center of mass (x, y) of a planar lamina.

55. The centroid of the plane region bounded by the graphs of
y=f(),y=0,x=0,andx = 1is (%, %) Is it possible to
find the centroid of each of the regions bounded by the
graphs of the following sets of equations? If so, identify the
centroid and explain your answer.

@y=fx)+2y=2x=0and x=1

M y=fx—-2),y=0,x=2, and x = 3

©y=—f),y=0,x=0,and x = 1

(d)y=f&x),y=0x=—1, and x = 1
56. State the Theorem of Pappus.

In Exercises 57 and 58, use the Second Theorem of Pappus,
which is stated as follows. If a segment of a plane curve C is
revolved about an axis that does not intersect the curve (except
possibly at its endpoints), the area S of the resulting surface of
revolution is given by the product of the length of C times the
distance d traveled by the centroid of C.

57. A sphere is formed by revolving the graph of y = /¥2 — x2
about the x-axis. Use the formula for surface area, S = 47r?, to
find the centroid of the semicircle y = /r? — x2,

58. A torus is formed by revolving the graph of (x — 1)2 + y2 = 1
about the y-axis. Find the surface area of the torus.

59. Let n = 1 be constant, and consider the region bounded by
fx) = x", the x-axis, and x = 1. Find the centroid of this
region. As n— co, what does the region look like, and where is
its centroid?

Putnam Exam Challenge

60. Let V be the region in the cartesian plane consisting of all
points (x, y) satisfying the simultaneous conditions

x| <y<|x|+3 and y<4
Find the centroid (%, y) of V.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.




The Granger Collection

BLAISE Pascal (1623-1662)

Pascal is well known for his work in many
areas of mathematics and physics, and also

for his influence on Leibniz. Although much
of Pascal’s work in calculus was intuitive and
lacked the rigor of modern mathematics, he

nevertheless anticipated many important
results.
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j] Fluid Pressure and Fluid Force

e Find fluid pressure and fluid force.

Fluid Pressure and Fluid Force

Swimmers know that the deeper an object is submerged in a fluid, the greater the
pressure on the object. Pressure is defined as the force per unit of area over the
surface of a body. For example, because a column of water that is 10 feet in height and
I inch square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is
4.3 pounds per square inch.* At 20 feet, this would increase to 8.6 pounds per square
inch, and in general the pressure is proportional to the depth of the object in the fluid.

Definition of Fluid Pressure
The pressure on an object at depth 4 in a liquid is
Pressure = P = wh

where w is the weight-density of the liquid per unit of volume.

Below are some common weight-densities of fluids in pounds per cubic foot.

Ethyl alcohol 494
Gasoline 41.0-43.0
Glycerin 78.6
Kerosene 51.2
Mercury 849.0
Seawater 64.0
Water 62.4

When calculating fluid pressure, you can use an important (and rather surprising)
physical law called Pascal’s Principle, named after the French mathematician Blaise
Pascal. Pascal’s Principle states that the pressure exerted by a fluid at a depth A is
transmitted equally in all directions. For example, in Figure 7.68, the pressure at the
indicated depth is the same for all three objects. Because fluid pressure is given in
terms of force per unit area (P = F/A), the fluid force on a submerged horizontal
surface of area A is

Fluid force = F = PA = (pressure)(area).

. -

q .: = - .. : | :
\/ “h_"-._-q;};;': v i
I TRl |

e

The pressure at 4 is the same for all three objects.
Figure 7.68

* The total pressure on an object in 10 feet of water would also include the pressure due to
Earth’s atmosphere. At sea level, atmospheric pressure is approximately 14.7 pounds per
square inch.
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The fluid force on a horizontal metal sheet is
equal to the fluid pressure times the area.
Figure 7.69

o) —

Calculus methods must be used to find the
fluid force on a vertical metal plate.
Figure 7.70

EXAMPLE |  Fluid Force on a Submerged Sheet
L

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is
submerged in 6 feet of water, as shown in Figure 7.69.

Solution Because the weight-density of water is 62.4 pounds per cubic foot and the
sheet is submerged in 6 feet of water, the fluid pressure is

P = (62.4)(6) P = wh
= 374.4 pounds per square foot.

Because the total area of the sheetis A = (3)(4) = 12 square feet, the fluid force is

F=PA= (374.4 m) (12 square feet)
square foot

= 44928 pounds.

This result is independent of the size of the body of water. The fluid force would be
the same in a swimming pool or lake. ———

In Example 1, the fact that the sheet is rectangular and horizontal means that you
do not need the methods of calculus to solve the problem. Consider a surface that is
submerged vertically in a fluid. This problem is more difficult because the pressure is
not constant over the surface.

Suppose a vertical plate is submerged in a fluid of wei ght-density w (per unit of
volume), as shown in Figure 7.70. To determine the total force against one side of the
region from depth ¢ to depth d, you can subdivide the interval [, d] into n subinter-
vals, each of width Ay. Next, consider the representative rectangle of width Ay and
length L(y,), where ¥; is in the jth subinterval. The force against this representative
rectangle is

AF; = w(depth)(area)
= Wh(yi)L(yi) Ay.

The force against # such rectangles is

2 AF, = WEh(y[)L(yi) Ay.
=1 =1

Note that w is considered to be constant and is factored out of the summation.
Therefore, taking the limit as |[A — 0 (n — co) suggests the following definition.

Definition of Force Exerted by a Fluid

The force F exerted by a fluid of constant weight-density w (per unit of
volume) against a submerged vertical plane region from y = ¢ to y=dis

F=w "Blll}o Zh(yi)l’(yi) Ay
=z f hOIL() dy

where h(y) is the depth of the fluid at y and L(y) is the horizontal length of the
region at y.




.
&y

=i —

— G ft—

(a) Water gate in a dam

L 13,=9)

(b) The fluid force against the gate

Figure 7.71
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EXAMPLE 2 Fluid Force on aVertical Surface

A vertical gate in a dam has the shape of an isosceles trapezoid 8 feet across the top
and 6 feet across the bottom, with a height of 5 feet, as shown in Figure 7.71(a). What
is the fluid force on the gate when the top of the gate is 4 feet below the surface of the
water?

Solution In setting up a mathematical model for this problem, you are at liberty to
locate the x- and y-axes in several different ways. A convenient approach is to let the
y-axis bisect the gate and place the x-axis at the surface of the water, as shown in
Figure 7.71(b). So, the depth of the water at y in feet is

Depth = h(y) = —y.

To find the length L(y) of the region at y, find the equation of the line forming the
right side of the gate. Because this line passes through the points (3, —9) and (4, —4),
its equation is
_—4-(=9)
y— (=7 -3
y+9=5@x-3)
y=>5x—24
_y+t24

& 5

In Figure 7.71(b) you can see that the length of the region at y is

Length = 2x
2
==(y+24
s+ 24)
= L(y).

Finally, by integrating from y = —9toy = —4, you can calculate the fluid force to be

d
F= WJ h(y)L(y) dy

62.4 f__:(— y)@)(y T 24) dy

-4
—-62.4 (%)f (y2 + 24y) dy
-9
2\[ 3 ]_4
— . =il = 4+ 2
624<5>[3 12y N

-o24(3)(=5%)

13,936 pounds.

Il

NOTE  In Example 2, the x-axis coincided with the surface of the water. This was convenient,
but arbitrary. In choosing a coordinate system to represent a physical situation, you should
consider various possibilities. Often you can simplify the calculations in a problem by locating
the coordinate system to take advantage of special characteristics of the problem, such as
symmetry.
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—

RS M

Observation
window

The fluid force on the window
Figure 7.72

~1.5 [o—

/[ is not differentiable at x = +1.
Figure 7.73

EXAMPLE 3 Fluid Force on a Vertical Surface
E— e —1

A circular observation window on a marine science ship has a radius of 1 foot, and the
center of the window is 8 feet below water level, as shown in Figure 7.72. What is the
fluid force on the window?

Solution  To take advantage of symmetry, locate a coordinate system such that the
origin coincides with the center of the window, as shown in Figure 7.72. The depth at
y is then

Depth = A(y) =8 — y.

The horizontal length of the window is 2x, and you can use the equation for the circle,
x*> + ¥y = 1, to solve for x as follows.

Length = 2x
=2J1 —y* = L(y)

Finally, because y ranges from —1 to 1, and using 64 pounds per cubic foot as the
weight-density of seawater, you have

F=w f HOIL() dy

= 64ﬁ|(8 = )(2)V1 — yrdy.

Initially it looks as if this integral would be difficult to solve. However, if you break
the integral into two parts and apply symmetry, the solution is simple.

F= 64(]6)’]‘l V1 —=y2dy — 64(2)fI yv1 —yrdy

The second integral is O (because the integrand is odd and the limits of integration are
symmetric to the origin). Moreover, by recognizing that the first integral represents
the area of a semicircle of radius 1, you obtain

F= 64(16)(%) — 64(2)(0)
= 5127
= 1608.5 pounds.

So, the fluid force on the window is 1608.5 pounds. —_—

TECHNOLOGY To confirm the result obtained in Example 3, you might have
considered using Simpson’s Rule to approximate the value of

I
128] (8 — x)V/1 — x2 dx.
—1

From the graph of
f&) =B -0J/1-2

. however, you can see that f is not differentiable when x = +1 (see Figure 7.73).
This means that you cannot apply Theorem 4.19 from Section 4.6 to determine
the potential error in Simpson’s Rule. Without knowing the potential error, the
approximation is of little value. Use a graphing utility to approximate the integral.



Exercises for Section 7.7

Force on a Submerged Sheet In Exercises 1 and 2, the area of
the top side of a piece of sheet metal is given. The sheet metal is
submerged horizontally in 5 feet of water. Find the fluid force
on the top side.

1. 3 square feet 2. 16 square feet

Buoyant Force In Exercises 3 and 4, find the buoyant force of
a rectangular solid of the given dimensions submerged in water
so that the top side is parallel to the surface of the water. The
buoyant force is the difference between the fluid forces on the
top and bottom sides of the solid.

3. 4.

. %
21t ' |

Fluid Force on a Tank Wall In Exercises 5-10, find the fluid
force on the vertical side of the tank, where the dimensions are
given in feet. Assume that the tank is full of water.

5. Rectangle 6. Triangle

te————— A —— je—— 4 —————

7. Trapezoid 8. Semicircle

e ——>1

l— ) —1
9. Parabola, y = x? 10. Semiellipse,
y= —4/36 =%

l——— f ————1

| 4 1
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See www.CalcChat,com for worked-out solutions to odd-numbered exercises

Fluid Force of Water 1In Exercises 11-14, find the fluid force on
the vertical plate submerged in water, where the dimensions are
given in meters and the weight-density of water is 9800 newtons
per cubic meter.

11. Square 12. Square

I
|

e B ———

13. Triangle
2 I I:

14, Rectangle

|—————— N —————]

|
r——— § ——1

Force on a Concrete Form In Exercises 15-18, the figure is the
vertical side of a form for poured concrete that weighs 140.7
pounds per cubic foot. Determine the force on this part of the
concrete form.

15. Rectangle 16. Semiellipse,

y=—2/6=%

T e

10 ft

17. Rectangle

19. Fluid Force of Gasoline A cylindrical gasoline tank is placed
so that the axis of the cylinder is horizontal. Find the fluid force
on a circular end of the tank if the tank is half full, assuming
that the diameter is 3 feet and the gasoline weighs 42 pounds
per cubic foot.
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20.

21.

22,

23.

24.

25.

26.

CHAPTER 7 Applications of Integration

Fluid Force of Gasoline Repeat Exercise 19 for a tank that is
full. (Evaluate one integral by a geometric formula and the
other by observing that the integrand is an odd function.)

Fluid Force on a Circular Plate A circular plate of radius r
feet is submerged vertically in a tank of fluid that weighs w
pounds per cubic foot. The center of the circle is k (k > r) feet
below the surface of the fluid. Show that the fluid force on the
surface of the plate is

F = wk(mrd).

(Evaluate one integral by a geometric formula and the other by
observing that the integrand is an odd function.)

Fluid Force on a Circular Plate  Use the result of Exercise 21
to find the fluid force on the circular plate shown in each figure.
Assume the plates are in the wall of a tank filled with water and
the measurements are given in feet.

(@) T (b)
|
©

Fluid Force on a Rectangular Plate A rectangular plate of
height 4 feet and base b feet is submerged vertically in a tank
of fluid that weighs w pounds per cubic foot. The center is &
feet below the surface of the fluid, where 4 < k/2. Show that
the fluid force on the surface of the plate is

F = wkhb.

Fluid Force on a Rectangular Plate Use the result of
Exercise 23 to find the fluid force on the rectangular plate
shown in each figure. Assume the plates are in the wall of a tank
filled with water and the measurements are given in feect.

(a) (b)

f— o —
(=)

10

Submarine Porthole A porthole on a vertical side of a
submarine (submerged in seawater) is 1 square foot. Find the
fluid force on the porthole, assuming that the center of the
square is 15 feet below the surface.

Submarine Porthole Repeat Exercise 25 for a circular
porthole that has a diameter of 1 foot. The center is 15 feet
below the surface.

27.

%” 28.

Modeling Data The vertical stern of a boat with a superim-
posed coordinate system is shown in the figure. The table shows
the width w of the stern at indicated values of y. Find the fluid
force against the stern if the measurements are given in feet.

oz |1|3[2]3]| 3 | | 4
w|0|[3]|5]|8)9] 101025 10.5 10.5
Water level v

/ Stern
[USRRNY
gl
9 LI =&
Q}".; 2| 19
i
=ttt
-6 =4 =2 2 4 6

Irrigation Canal Gate The vertical cross section of an
irrigation canal is modeled by

5x2
x2+ 4

f) =

where x is measured in feet and x = O corresponds to the
center of the canal. Use the integration capabilities of a graph-
ing utility to approximate the fluid force against a vertical gate
used to stop the flow of water if the water is 3 feet deep.

H"" In Exercises 29 and 30, use the integration capabilities of a
graphing utility to approximate the fluid force on the vertical
plate bounded by the x-axis and the top half of the graph of the
equation. Assume that the base of the plate is 12 feet beneath the
surface of the water.

29.

31.

x2B Y23 = 428

Think About It

(a) Approximate the depth of the water in the tank in Exercise 5
if the fluid force is one-half as great as when the tank is full.

(b) Explain why the answer in part (a) is not %

Writing About Concepts

32.
33.
34.

Define fluid pressure.
Define fluid force against a submerged vertical plane region.

Two identical semicircular windows are placed at the same
depth in the vertical wall of an aquarium (see figure).
Which has the greater fluid force? Explain.

id

W

id
i

£
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 1-10, sketch the region bounded by the graphs of . 20. Modeling Data The table shows the annual service revenue R,

the equations, and determine the area of the region.

,y=0,x=1,x=5

le’_‘

1.y=

2.y =

5

,y=4,x

RMI_.

1

3.y=xz—+1,y=0,x=—1,x=l

4. x=y -2y, x=-1,y=0
5.y=xy=x
6. x=y>"+1,x=y+3
7.y=¢e,y=e, x=0
8. y = cscx, y = 2 (one region)
. T S5
= = —<x <=
9, y=sinx, y cosx,4_x_ n
1 = i
10. x = =—, - <y< - —
0. x =cosy, x >3 SY 3

iBJF" In Exercises 11-14, use a graphing utility to graph the region

bounded by the graphs of the functions, and use the integration
capabilities of the graphing utility to find the area of the region.
1. y=x2— 8+ 3, y=3+ 8 — &2

12. y=x* —4x+ 3, y=x,x=0

13. Jx+JSy=1y=0,x=0

14.y = x* — 2x%, y = 2¢?

In Exercises 15-18, use vertical and horizontal representative
rectangles to set up integrals for finding the area of the region
bounded by the graphs of the equations. Find the area of the
region by evaluating the easier of the two integrals.

15. x=y*— 2y, x=0

16.y=\/x—1,y=x;1

4
2
18. y=Vx—1,y=2,y=0,x=0

17.y=1—-—7,y=x—2,y=1

19. Think About It A person has two job offers. The starting
salary for each is $30,000, and after 10 years of service each
will pay $56,000. The salary increases for each offer are shown
in the figure. From a strictly monetary viewpoint, which is the
better offer? Explain.

N
60,000 A

40,000 -+

-4

20,000 4+

Salary (in dollars)

in billions of dollars for the cellular telephone industry for the
years 1995 through 2001. (Source: Cellular Telecommunications
& Internet Association)

Year | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001

R, 19.1 | 23.6 | 27.5 | 33.1 | 40.0 | 52.5 | 65.0

(a) Use the regression capabilities of a graphing utility to find an
exponential model for the data. Let  represent the year, with
t = 5 corresponding to 1995. Use the graphing utility to plot
the data and graph the model in the same viewing window.

(b) A financial consultant believes that a model for service
revenue for the years 2005 through 2010 is

R, =5 + 68302,

What is the difference in total service revenue between the
two models for the years 2005 through 2010?

In Exercises 21-28, find the volume of the solid generated by
revolving the plane region bounded by the equations about the
indicated line(s).

2. y=x, y=0,x=4
(a) the x-axis (b) the y-axis
(c) the linex = 4 (d) the line x = 6
2. y=Vx,y=2,x=0
(a) the x-axis (b) the liney = 2
(c) the y-axis (d) thelinex = —1
PR
23, 16 + 3 = (a) the y-axis (oblate spheroid)
(b) the x-axis (prolate spheroid)
PRI
24, ) + " =1 (a) the y-axis (oblate spheroid)
(b) the x-axis (prolate spheroid)
1
25.y—x4+1,y—0,x—0, x=1
revolved about the y-axis
26 =; =0,x=-1,x=1
IRV e ’

revolved about the x-axis

27.y=1/(1+ V/x—2),y=0,x=2,x=6
revolved about the y-axis

28, y=e X, y=0,x=0,x=1

revolved about the x-axis

In Exercises 29 and 30, consider the region bounded by the
graphs of the equations y = x/x + 1and y = 0.
29. Area Find the area of the region.

30. Volume Find the volume of the solid generated by revolving
the region about (a) the x-axis and (b) the y-axis.
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31. Depth of Gasoline in a Tank A gasoline tank is an oblate
spheroid generated by revolving the region bounded by the
graph of (x2/16) + (¥*/9) = 1 about the y-axis, where x and y
are measured in feet. Find the depth of the gasoline in the tank
when it is filled to one-fourth its capacity.

32. Magnitude of a Base The base of a solid is a circle of radius
a, and its vertical cross sections are equilateral triangles. The
volume of the solid is 10 cubic meters. Find the radius of
the circle.

In Exercises 33 and 34, find the arc length of the graph of the
function over the given interval.

Bof6) =504 [0,4]  3y=ieeo [13]

'UP‘ 35. Length of a Catenary A cable of a suspension bridge forms

a catenary modeled by the equation

X

= - <
2000) 280, 2000 < x < 2000

y = 300 cosh<
where x and y are measured in feet. Use a graphing utility to
approximate the length of the cable,

36. Approximation Determine which value best approximates
the length of the arc represented by the integral

/4 .
f VI (sec? x)? dx.
0

(Make your selection on the basis of a sketch of the arc and nor
by performing any calculations.)

@-2 O™l @7 @4 (@3

37. Surface Area Use integration to find the lateral surface area
of a right circular cone of height 4 and radius 3.

38. Surface Area The region bounded by the graphs of
y =2Vxy =0, and x = 3 is revolved about the x-axis. Find
the surface area of the solid generated.

39. Work A force of 4 pounds is needed to stretch a spring 1 inch
from its natural position. Find the work done in stretching the
spring from its natural length of 10 inches to a length of
15 inches.

40. Work The force required to stretch a spring is 50 pounds.
Find the work done in stretching the spring from its natural
length of 9 inches to double that length.

41. Work A water well has an eight-inch casing (diameter) and is
175 feet deep. The water is 25 feet from the top of the well.
Determine the amount of work done in pumping the well dry,
assuming that no water enters it while it is being pumped.

42, Work Repeat Exercise 41, assuming that water enters the well
at a rate of 4 gallons per minute and the pump works at a rate
of 12 gallons per minute. How many gallons are pumped in
this case?

43. Work A chain 10 feet long weighs 5 pounds per foot and is
hung from a platform 20 feet above the ground. How much
work is required to raise the entire chain to the 20-foot level?

44. Work A windlass, 200 feet above ground level on the top of a
building, uses a cable weighing 4 pounds per foot. Find the
work done in winding up the cable if
(a) one end is at ground level.

(b) there is a 300-pound load attached to the end of the cable.

45. Work The work done by a variable force in a press is 80 foot-
pounds. The press moves a distance of 4 feet and the force is a
quadratic of the form F = ax?. Find a.

46. Work Find the work done by the force F shown in the figure.

-+
2 4 6 8 10 12
Feet

In Exercises 47-50, find the centroid of the region bounded by
the graphs of the equations.

7. Sx+ Vy=Va, x=0,y=0
48. y=x%, y=2x+ 3

4. y=a>—x%y=0

50, y =x23,y = ix

51. Centroid A blade on an industrial fan has the configuration of
a semicircle attached to a trapezoid (see figure). Find the
centroid of the blade.

y

52. Fluid Force A swimming pool is 5 feet deep at one end and
10 feet deep at the other, and the bottom is an inclined plane.
The length and width of the pool are 40 feet and 20 feet. If the
pool is full of water, what is the fluid force on each of the
vertical walls?

53. Fluid Force Show that the fluid force against any vertical
region in a liquid is the product of the weight per cubic volume
of the liquid, the area of the region, and the depth of the
centroid of the region.

54. Fluid Force Using the result of Exercise 53, find the fluid
force on one side of a vertical circular plate of radius 4 feet that
is submerged in water so that its center is 5 feet below the
surface.



m Problem Solving

1. Let R be the area of the region in the first quadrant bounded by
the parabola y = x? and the line y = cx, ¢ > 0. Let T be the area
of the triangle AOB. Calculate the limit

T

lim —.
¢c—>0* R

o

2. Let R be the region bounded by the parabola y = x — x? and the
x-axis. Find the equation of the line y = mx that divides this
region into two regions of equal area.

3. (a) A torus is formed by revolving the region bounded by the
circle

x—22+y2=

about the y-axis (see figure). Use the disk method to calcu-
late the volume of the torus.

Centroid

(b) Use the disk method to find the volume of the general torus
if the circle has radius r and its center is R units from the
axis of rotation.

Fb’ 4. Graph the curve

8y? = x2(1 — x?).

Use a computer algebra system to find the surface area of the
solid of revolution obtained by revolving the curve about the
X-axis.
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5. A hole is cut through the center of a sphere of radius r (see
figure). The height of the remaining spherical ring is 4. Find the
volume of the ring and show that it is independent of the radius
of the sphere.

6. A rectangle R of length / and width w is revolved about the
line L (see figure). Find the volume of the resulting solid of
revolution.

{ _I_l._} =X
2 4

Figure for 6

Figure for 7

7. (a) The tangent line to the curve y = x* at the point A(1, 1)
intersects the curve at another point B. Let R be the area of
the region bounded by the curve and the tangent line. The
tangent line at B intersects the curve at another point C
(see figure). Let S be the area of the region bounded by the
curve and this second tangent line. How are the areas R and
S related?

(b) Repeat the construction in part (a) by selecting an arbitrary
point A on the curve y = x*. Show that the two areas R and
S are always related in the same way.

8. The graph of y = f(x) passes through the origin. The arc length
of the curve from (0, 0) to (x, f(x)) is given by

s(x) = J:I‘m dt.

Identitfy the function f.
9. Let f be rectifiable on the interval [a, b], and let

o), = f A FFOR

. . ds
(a) Find I

(b) Find ds and (ds)?.
(¢) If £(r) = #3/2, find s(x) on [1, 3].
(d) Calculate s(2) and describe what it signifies.
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10. The Archimedes Principle states that the upward or buoyant In Exercises 15 and 16, find the consumer surplus and producer
force on an object within a fluid is equal to the weight of the surplus for the given demand [p,(x)] and supply [p,(x)] curves.
fluid that the object displaces. For a partially submerged object, The consumer surplus and producer surplus are represented by
you can obtain information about the relative densities of the the areas shown in the figure.
floating object and the fluid by observing how much of the P
object is above and below the surface. You can also determine
the size of a floating object if you know the amount that is
above the surface and the relative densities. You can see the top SN Ime Supply
of a floating iceberg (see figure). The density of ocean water is bupglus Pointof  CTEYe
1.03 x 10* kilograms per cubic meter, and that of ice is equilibrium
0.92 x 107 kilograms per cubic meter. What percent of the total I
iceberg is below the surface? Pyl=——- <=y Po)

“““““ oo A A i I}r“oducel' . Dcléum;l
surplus ¢ curve
E =

15. p,(x) = 50 — 0.5x, p,(x) = 0.125x
16. p,(x) = 1000 — 0.4x2, p,(x) = 42x

= y==h 17. A swimming pool is 20 feet wide, 40 feet long, 4 feet deep at
one end, and 8 feet deep at the other end (see figure). The
bottom is an inclined plane. Find the fluid force on each

vertical wall.

11. Sketch the region bounded on the left by x = 1, bounded above
by y = 1/x3, and bounded below by y = —1/x3.

(a) Find the centroid of the region for 1 < x < 6.

(b) Find the centroid of the region for I < x < b.
(c) Where is the centroid as b —> 00 ?

12. Sketch the region to the right of the y-axis, bounded above by
y = 1/x*and bounded below by y = —1/x%.

(a) Find the centroid of the region for 1 < x < 6.

(b) Find the centroid of the region for 1 < x < b.

(c) Where is the centroid as b —o0?
13. Find the work done by each force F.

(b)

v Ay —l_‘-_—f‘_-_'f_’:_.

1 | l - x
10 20 30 40
14. Estimate the surface area of the pond using (a) the Trapezoidal )
Rule and (b) Simpson’s Rule. 18. (a) Find at least two continuous functions f that satisfy each
condition.
(i) f&x) =20on[0, 1] (i) f(0) =0and f(1) =0

(iii) The area bounded by the graph of f and the x-axis for
0 < x < 1equals I.

HV (b) For each function found in part (a), approximate the arc
length of the graph of the function on the interval [0, 1].
(Use a graphing utility if necessary.)
(c) Can you find a function f that satisfies the conditions in
part (a) and whose graph has an arc length of less than 3 on
the interval [0, 1]?




