The area of a parabolic region can
be approximated as the sum of the
areas of rectangles. As you increase
the number of rectangles, the
approximation tends to become
more and more accurate. In Section
4.2, you will learn how the limit
process can be used to find areas
of a wide variety of regions. This
process is called integration and is
closely related to differentiation.

G "N .f___r,-'; 2

Integration

This photo of a jet breaking the sound barrier was taken by Ensign
John Gay. At the time the photo was taken, was the jet’s velocity
constant or changing? Why?

©Corbis Sygma
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EXPLORATION

Finding Antiderivatives For each
derivative, describe the original
function F.

a. F'(x) = 2x
b. F'(x) = x

¢ Flx) = x2
d F) =+
e. Flx) = x%

f. F(x) = cosx
What strategy did you use to find F?

Integration

Antiderivatives and Indefinite Integration

* Write the general solution of a differential equation.
* Use indefinite integral notation for antiderivatives.
¢ Use basic integration rules to find antiderivatives.

* Find a particular solution of a differential equation.

Antiderivatives

Suppose you were asked to find a function F whose derivative is f(x) = 3x2 From
your knowledge of derivatives, you would probably say that

F(x) = x° because %[}P] = 3x2

The function F is an antiderivative of f.

Definition of an Antiderivative

A function F is an antiderivative of f on an interval I if F'(x) = f(x) for all x in .

Note that F is called an antiderivative of f, rather than the antiderivative of f-To
see why, observe that

F(x)=x F,x) =x>—5, and F,(x) = x3+ 97
1 2 3

are all antiderivatives of f(x) = 3x2 In fact, for any constant C, the function given by
F(x) = x* + C is an antiderivative of f,

‘ THEOREM 4.1 Representation of Antiderivatives

If F is an antiderivative of f on an interval 7, then G is an antiderivative of f
on the interval / if and only if G is of the form G(x) = F(x) + C, for all x in /
where C is a constant.

Proof  The proof of Theorem 4.1 in one direction is straightforward. That is, if
G(x) = F(x) + C, F'(x) = f(x), and C is a constant, then

G = %[F(x) +Cl=F) + 0= ().
To prove this theorem in the other direction, assume that G is an antiderivative of f.
Define a function H such that

H(x) = G(x) — F(x).

If H is not constant on the interval 7, there must exist @ and b (a < b) in the interval
such that H(a) # H(b). Moreover, because H is differentiable on (a, b), you can apply
the Mean Value Theorem to conclude that there exists some ¢ in {a, b) such that

H1e) = 2O -G

Because H(b) # H(a), it follows that H(¢) # (. However, because G'le) = F'c), you
know that H'(c) = G'(¢c) — F’(¢) = 0, which contradicts the fact that H¢) # 0.
Consequently, you can conclude that H(x) is a constant, C. So, G(x) — F(x) = C
and it follows that G(x) = F(x) + C.




Functions of the formy = 2x + C
Figure 4.1

NOTE In this text, the notation
[ f(x) dx = F(x) + C means that F is
an antiderivative of fon an interval.
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Using Theorem 4.1, you can represent the entire family of antiderivatives of a
function by adding a constant to a known antiderivative. For example, knowing that
D,[x?] = 2x, you can represent the family of all antiderivatives of f{x) = 2x by

Gx)=x*+C Family of all antiderivatives of f(x) = 2x

where C is a constant. The constant C is called the constant of integration. The
family of functions represented by G is the general antiderivative of f, and
G(x) = x* + C is the general solution of the differential equation

G ’(x) = 2x. Differential equation

A differential equation in x and y is an equation that involves x, y, and
derivatives of y. For instance, y’ = 3x and y’ = x? + 1 are examples of differential
equations.

EXAMPLE | Solving a Differential Equation
L= ]
Find the general solution of the differential equation y” = 2.
Solution To begin, you need to find a function whose derivative is 2. One such
function is
y = 2x. 2x is an antiderivative of 2.

Now, you can use Theorem 4.1 to conclude that the general solution of the differential
equation is

y=2x+ C. General solution

The graphs of several functions of the form y = 2x + C are shown in Figure 4.1.

Notation for Antiderivatives
When solving a differential equation of the form

dy _
L - 1

it is convenient to write it in the equivalent differential form
dy = f(x) dx.

The operation of finding all solutions of this equation is called antidifferentiation (or
indefinite integration) and is denoted by an integral sign J. The general solution is
denoted by

l Constant of

I integration

Varijable of
integration

i
y = [f(x) dx = F(x) + C.

[
| Integrand ‘

The expression [f(x)dx is read as the antiderivative of f with respect to x. So, the
differential dx serves to identify x as the variable of integration. The term indefinite
integral is a synonym for antiderivative.
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Basic Integration Rules

The inverse nature of integration and differentiation can be verified by substituting
F(x) for f(x) in the indefinite integration definition to obtain

f F'(x)dx = F(x) + C. Integration is the “inverse” of differentiation.

Moreover, if [ f(x) dx = F(x) + C, then

Differentiation is the “inverse” of integration.

= [ [ dx] i)

These two equations allow you to obtain integration formulas directly from
differentiation formulas, as shown in the following summary.

Basic Integration Rules

Differentiation Formula B Integration Formula

4rc1=0 0dx = C

dx

4 )=k kv = kr + C

dx T

d

T [kf ()] = kf(x) ka(x) dx = kjf(x) dx

d

2116 2 6] = 1) £ ¢ [ = ewtan = [rerac st
d 1+ |

;i_x[x" = px"! x"dx=n+ 1 +C, n#—1 Power Rule
d .. .
a[smx_]=cosx cos xdx = sinx + C

d . .

—[cos x] = —sinx fsmxdx=—cosx+C

dx

d 2

o [tan x] = sec?x secxdx =tanx + C

d

d—-x[secx]=secxtanx fsecxtanxdx=secx+C
d

a[cotx] = —cscx fcsczxdx = —cotx +C

d

E[cscx]= —cscxcot x fcscxcotxdx= ~cscx+ C

NOTE Note that the Power Rule for Integration has the restriction that n # —1. The
evaluation of [1/xdx must wait until the introduction of the natural logarithm function in
Chapter 5.



@
TECHNOLOGY Some
software programs, such as Derive,
Maple, Mathcad, Mathematica, and
the TI-89, are capable of performing
integration symbolically. If you have
access to such a symbolic integration
utility, try using it to evaluate the
indefinite integrals in Example 3.
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EXAMPLE 2 Applying the Basic Integration Rules

Describe the antiderivatives of 3x.

Solution J3x dx =3 J x dx Constant Multiple Rule
= 3fxl dx Rewrite x as x'
X
=3 5 + C Power Rule (n = 1)
3 5
= 5,\‘” + C Simplify.

So, the antiderivatives of 3x are of the form %x2 + C, where C is any constant.

When indefinite integrals are evaluated, a strict application of the basic integration
rules tends to produce complicated constants of integration. For instance, in Example 2,
you could have written

x2 3
f?)xdx = 3dex = 3(—2— + C> = Exz + 3C.

However, because C represents any constant, it is both cumbersome and unnecessary
to write 3C as the constant of integration. So, %xz + 3C is written in the simpler form,
32
>+ C.

In Example 2, note that the general pattern of integration is similar to that of
differentiation.

Original integral Rewrite Integrate Simplify
EXAMPLE 3 Rewriting Before Integrating
]
Original Integral Rewrite Integrate Simplify
1 x 2 1
. -3 L
a. Jx3 dx Jx dx 3 + C 72 +C
b \/—d l/2d 1‘;‘_3 + C _2_ 32 4 C
; x dx xV2dx 372 T € 3
¢ stinxdx 2Jsinxdx 2(—cosx) + C —2cosx + C

Remember that you can check your answer fo an antidifferentiation problem by
differentiating. For instance, in Example 3(b), you can check that Y2+ Cis the
correct antiderivative by differentiating the answer to obtain

2. 2\(3
Dx[gx ¥2 4 C] = (g) (E)x V2 = \/)—C Use differentiation to check antiderivative.

‘Wﬂﬁ indicates that in the HM mathSpace® CD-ROM and the online Eduspace® system
for this text, you will find an Open Exploration, which further explores this example using the
computer algebra systems Maple, Mathcad, Mathematica, and Derive.
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The basic integration rules listed earlier in this section allow you to integrate any
polynomial function, as shown in Example 4.

EXAMPLE 4 Integrating Polynomial Functions

L ]
a. fdx . fl dx Integrand is understood to be 1.
=x+C Integrate.
b. J(x+ 2) dx = fxdx + dex
x2
= ) +C +2x+ C, Integrate.
X2
=E+2x+C C=C+¢,

The second line in the solution is usually omitted.

5 3) 2
C. f(3x4 = 5x2 + x)dx = 3(%) - 5(%) + % + C Integrate.

3. 5 3, 1
=55 — 2% 4+ a2 + implify.
Sx 3)6 2x C Simplify.

EXAMPLE 5 Rewriting Before Integrating
L |

+1 X l
f 2 \/)—C dx = f (ﬁ + x) dx Rewrite as two fractions.

Rewrite with fractional
= /2 —2) gy
J‘(“‘ X )‘h exponents.
x¥2 o g2
= 3—/,—2 + I_f.?: + C Integrate.
2 3/2 1/2 . .
= 3% + 2xV2 4+ C Simplify.

=§\/)_c(x+3)+C

NOTE When integrating quotients, do not integrate the numerator and denominator
separately. This is no more valid in integration than it is in differentiation. For instance, in
Example 5, be sure you understand that

Je+Ddx 52 +x+ ¢
JVx dx %x\/;+C2‘

J’x+ 1cix=z\/)—c(x-f-3)+Cisnotthesameas
Vx 3

EXAMPLE 6 Rewriting Before Integrating
L ]

sin x 1 sin x
NI dx = dx Rewrite as a product,
CcOos“ x COS X/\COS x
Rewrite using trigonometric
= |secxtan x dx | W Using trig
identities.

secx + C Integrate. ——



F(x)=x3—x+C

The particular solution that satisfies
the initial condition F(2) = 41s
Flx) =x*—x— 2

Figure 4.2

Fw=-1l+c

The particular solution that satisfies
the initial condition F(1) = 0 is
Fx)=—-(/x) + Lx>0.
Figure 4.3
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Initial Conditions and Particular Solutions

You have already seen that the equation y = [ f(x)dx has many solutions (each
differing from the others by a constant). This means that the graphs of any two
antiderivatives of f are vertical translations of each other. For example, Figure 4.2
shows the graphs of several antiderivatives of the form

y = j(:’)xz —Ddx=x>*—x+C General solution
for various integer values of C. Each of these antiderivatives is a solution of the

differential equation

Ay _ a0
dx_3x 1.

In many applications of integration, you are given enough information to
determine a particular solution. To do this, you need only know the value of
y = Flx) for one value of x. This information is called an initial condition. For
example, in Figure 4.2, only one curve passes through the point (2, 4). To find this
curve, you can use the following information.

Fx)=x*-x+C General solution
F(2) =4 Initial condition

By using the initial condition in the general solution, you can determine that
F(2) = 8 — 2 + C = 4, which implies that C = —2. So, you obtain

Fx) =x>—x— 2 Particular solution

EXAMPLE 7 Finding a Particular Solution
e ]
Find the general solution of
1
Flx)=— x>0
X

and find the particular solution that satisfies the initial condition F(1) = 0.

Solution To find the general solution, integrate to obtain

1
F(x) = J; dx F(x) = [F'(x)dx
. f x2dx Rewrite as a power.
-1
X
= -1 + C Integrate.
1
= —; +C, x>0. General solution

Using the initial condition F(1) = 0, you can solve for C as follows.
F(1)=—IT+C=0 o Cc=1

So, the particular solution, as shown in Figure 4.3, is

il
F(x) = . +1, x>0 Particular solutjon
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Integration

So far in this section you have been using x as the variable of integration. In
applications, it is often convenient to use a different variable. For instance, in the

s() =-16¢2 + 64¢ + 80

150+
140 - AN

B0+ g ‘e £=3
1204 t=1 \
1o A 1
100+ '
90 44
80<Lt
70 + '

60 - '
50 + :
40 -+ i
30 4 \
204 \
10+ \

Height (in feet)

Time (in seconds)

Height of a ball at time ¢
Figure 4.4

NOTE In Example 8, note that the
position function has the form

s(t) = 3gr2 + vyt + 5o

where g = —32, vy is the initial velocity,
and sy is the initial height, as presented
in Section 2.2.

following example involving time, the variable of integration is ¢.

EXAMPLE 8 Solving a Vertical Motion Problem
R —

A ball is thrown upward with an initial velocity of 64 feet per second from an initial
height of 80 feet.

a. Find the position function giving the height s as a function of the time .
b. When does the ball hit the ground?

Solution

a. Lett = O represent the initial time. The two given initial conditions can be written
as follows.

5(0) = 80
510) = 64

Initial height is 80 feet.
Initial velocity is 64 feet per second.

Using — 32 feet per second per second as the acceleration due to

gravity, you can
write

s"(t) = =32
s() = | () dt = f—32dt = —32t+ C,.

Using the initial velocity, you obtain s(0) = 64 = —32(0) + C,, which implies
that C; = 64. Next, by integrating s(¢), you obtain

s(t) = fs’(t) dt = f(—32t + 64) dt = — 161> + 641 + C,.
Using the initial height, you obtain

5(0) = 80 = ~16(09) + 64(0) + ¢,
which implies that C, = 80. So, the position function is

s(f) = — 162 + 641 + 80. See Figure 4.4.

Using the position function found in part (a), you can find the time that the ball hits
the ground by solving the equation s(f) = 0.
s(®) = —162 + 64t + 80 = 0
=16(t+ 1)t —5) =0
tr=-1,5

Because ¢ must be positive, you

can conclude that the ball hits the ground
5 seconds after it was thrown.

Example 8 shows how to use calculus to analyze vertical motion problems in
which the acceleration is determined by a gravitational force. You can use a similar
strategy to analyze other linear motion problems (vertical or horizontal) in which the

acceleration (or deceleration) is the result of some other force, as you will see in
Exercises 77—86.
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Before you begin the exercise set, be sure you realize that one of the most
important steps in integration is rewriting the integrand in a form that fits the basic
integration rules. To illustrate this point further, here are some additional examples.

Original Integral

[

J(ﬂ + 1)2dt I(t“ + 212+ 1) dt

£ 4
Jr ,3dx
%2

JQ/)'c(x — 4) dx f(x‘*/3 — 4x1/3) dx

Exercises for Section 4.1

In Exercises 1-4, verify the statement by showing that the
derivative of the right side equals the integrand of the left side.

9 3
1. J(—F>dx=F+C
1 1
2. j<4x3——2>dx=x4+—+c
x x

3. J(x—z)(x+2)dx=§x3—4x+c

x2—-1 2(x2 + 3)
: = +
4 f T dx 3 /5 C

In Exercises 5-8, find the general solution of the differential
equation and check the result by differentiation.

& _ an . dr _
5. B 3¢ " 18 T
& _ ap Y _ s
7. p X 8. 2x

In Exercises 9-14, complete the table.

Original Integral Rewrite Integrate

Simplify

1
10. f;dx
1
11, |—=dx
j x/x
12. fx(xz + 3) dx
13, | dx

14. |5 dx

Rewrite Integrate Simplify
1/2 x'2 1/2
- = +
2|x dx 2(1/2> +C 4x C
IS 3 1 2
— 42 =)+t + 5+ =3+t +
5 2<3) t+C 5t 3t t+C

2 -1
(x + 3x72) dx i )+c l)cz—g-l-C
x

2

3
2,7/3 — 3x4/3
7% X

See www.CalcChat com for worked-out solutions to odd-numbered exeicises

In Exercises 15~34, find the indefinite integral and check the
result by differentiation.

15. J(x + 3) dx 16. J(S — x)dx
17. J(Zx — 3x%) dx 18. j(4x3 + 6x2 — 1) dx
19. j(x3 + 2) dx 20. J(x3 — 4x + 2) dx

21. f(xﬁ/2 +2x + 1) dx 22. J(ﬁ + 5%) dx

23, Je/;?dx 24. f(é/? +1)dx

I 1
25. < dx 26. Fdx

P ot ol | X2 +2x—3
27. = 28. f = dx
29. J(.‘- + 1)(3x — 2) dx 30. f f — 1)2dt
31. Jy%- dy 32. J(1 + 30)2dt

33. J‘d.\' 34, j3 dt

In Exercises 35-42, find the indefinite integral and check the
result by differentiation.

35, J(2 sinx + 3cosx)dx 36. J(tz — sin f) dt

37. f(l — cscteott)dt 38. J(02 + sec?6) do

39. j(secz 6 — sin 6) d 40. jsecy(tan y — secy) dy

COs X

41. f(tanzy + 1) dy 42, T

. dx
— LOSS X
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In Exercises 43-46, the graph of the derivative of a func-
tion is given. Sketch the graphs of fwo functions that have the
given derivative. (There is more than one correct answer.) To
print an enlarged copy of the graph, go to the website

www.mathgraphs.com.

43.

I

45.

Y

|‘

|
|

46. y

In Exercises 47 and 48, find the equation for y, given the deriv-
ative and the indicated point on the curve.

48. %= 2x— 1)

HU' Slope Fields In Exercises 49-52, a differential equation, a
point, and a slope field are given. A slope Jield (or direction field)
consists of line segments with slopes given by the differential
equation. These line segments give a visual perspective of the
slopes of the solutions of the differential equation. (a) Sketch
two approximate solutions of the differential equation on the
slope field, one of which passes through the indicated point. (To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.) (b) Use integration to find the particular
solution of the differential equation and use a graphing utility to
graph the solution. Compare the result with the sketches in

part (a).

d 1 d
49.Ey=§x—1, 4,2) so.ayzx2—1, (-1,3)
y ¥
\5\-1- N~— s N T N
N SNl
A A ANINS~——r sy L&/ —~%~—/ 1] 11
'-_'-\-_:-_-\\ ///;j.- [ 7—=~%k~—/11]
P N A L L7 —S~—/ 1]
D ey ] 4
\ -_\'-l\\\—//;/// L= ~—/7 5t
AN NN SSZIEE 00 o e e
ORI RS S s =30/ /= ~—/ 113
B 172 o om0 ek PN N
) AN N~ e sy N /S =NNN—/
\ L\\\—’//;; | bds—~e~—/ 1]
N, N i )
S~ —~— P led 7/ —~Y%~—/ ki
‘M Jr\\\_,/fﬁf- L1t 7=34~—7 101
dy dy |
51. & oS %, (0, 4) 52. s x> 0,(1,3)
y y
i
NN\ N e NN 4 | N sn
SNN N =l N NN~ A\ —
SN~ R — NN N 3-+\a =
Pt N NENEN \ - —
e A 2 PN = S
Pt SNANLNEN b\ = s
RS (I N
~NNN S Vs, i
~ANNN N L .,;__|__,__4 _1'_:-_|_..,__x
RN =l L =
~ N A\ =
__.+_...|, - X -2 N —
R | N —
N g < 1 —3 S i
\\\\\——//'r//—\\\\\ N — e,
\.__,._,2...'___._ - = -4 N =

Slope Fields 1In Exercises 53 and 54, (a) use a graphing utility
to graph a slope field for the differential equation, (b) use
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

53.

dy

D5 (Lo & _
o = 2 (-2,-2) 54. 2V, (4, 12)

In Exercises 55-62, solve the differential equation,

55.
57.
59.
60.
61.
62.

63.

64.

fx) =4x,f(0) =6 56. g'(x) = 6x2, g(0) = —1
hi(t) = 88 + 5, h(l) = —4 58, fs) =65 — 853, f(2) = 3
) =2, £(2) =5, f2) = 10

1) = x% f10) = 6, £(0) = 3

Jx) = x732 f(4) =2, f(0) =0

S7(x) = sinx, F)=1f0 =6

Tree Growth An evergreen nursery usually sells a certain
shrub after 6 years of growth and shaping. The growth rate
during those 6 years is approximated by dh/dt = 1.5t + 5,
where ¢ is the time in years and / is the height in centimeters.
The seedlings are 12 centimeters tall when planted (¢ = 0).

(a) Find the height after ¢ years.

(b) How tall are the shrubs when they are sold?

Population Growth  The rate of growth dP/dt of a population
of bacteria is proportional to the square root of ¢, where P is the
population size and # is the time in days (0 < ¢ < 10). That is,
dP/dt = k-/t. The initial size of the population is 500. After

1 day the population has grown to 600. Estimate the population
after 7 days.
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65. Use the graph of f” shown in the figure to answer the
following, given that f(0) = —4.
(a) Approximate the slope of f at x = 4. Explain.
(b) Is it possible that f(2) = — 1?7 Explain.
(¢) Is £(5) — f(4) > 0?7 Explain.
(d) Approximate the value of x where f is maximum.
Explain.

(e) Approximate any intervals in which the graph of f is
concave upward and any intervals in which it is
concave downward. Approximate the x-coordinates of
any points of inflection.

(f) Approximate the x-coordinate of the minimum of f”(x).

(g) Sketch an approximate graph of f. To print an enlarged
copy of the graph, go to the website
www.mathgraphs.com.

y

i

4 -1

2 fll
-4 =2 2 4
-2 -
—4 -
Figure for 65 Figure for 66

66. The graphs of f and f” each pass through the origin. Use the
graph of f” shown in the figure to sketch the graphs of f
and f”. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.
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Vertical Motion In Exercises 67-70, use a(f) = —32 feet per
second per second as the acceleration due to gravity. (Neglect
air resistance.)

67. A ball is thrown vertically upward from a height of 6 feet with an
initial velocity of 60 feet per second. How high will the ball go?

68. Show that the height above the ground of an object thrown

upward from a point s, feet above the ground with an initial
velocity of v, feet per second is given by the function

f(t) = —16t% + vot + s

69. With what initial velocity must an object be thrown upward
(from ground level) to reach the top of the Washington
Monument (approximately 550 feet)?

70. A balloon, rising vertically with a velocity of 16 feet per
second, releases a sandbag at the instant it is 64 feet above the
ground.

(a) How many seconds after its release will the bag strike the
ground?

(b) At what velocity will it hit the ground?
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Vertical Motion In Exercises 71-74, use a(t) = —9.8 meters
per second per second as the acceleration due to gravity.
(Neglect air resistance.)

71. Show that the height above the ground of an object thrown
upward from a point s, meters above the ground with an initial
velocity of v, meters per second is given by the function

FO) = =492 + vyt + s,
0 0]

72. The Grand Canyon is 1800 meters deep at its deepest point. A
rock is dropped from the rim above this point. Write the height
of the rock as a function of the time r in seconds. How long will
it take the rock to hit the canyon floor?

73. A baseball is thrown upward from a height of 2 meters with
an initial velocity of 10 meters per second. Determine its
maximum height.

74. With what initial velocity must an object be thrown upward (from
a height of 2 meters) to reach a maximum height of 200 meters?

75. Lunar Gravity On the moon, the acceleration due to gravity
is — 1.6 meters per second per second. A stone is dropped from
a cliff on the moon and hits the surface of the moon 20 seconds
later. How far did it fall? What was its velocity at impact?

76. Escape Velocity The minimum velocity required for an object
to escape Earth’s gravitational pull is obtained from the
solution of the equation

1
jvdv=—GMf?dy

where v is the velocity of the object projected from Earth, y is
the distance from the center of Earth, G is the gravitational
constant, and M is the mass of Barth. Show that v and y are
related by the equation

1 1
v=yd+ ZGM<; - E)

where v, is the initial velocity of the object and R is the radius
of Earth.

Rectilinear Motion In Exercises 77-80, consider a particle
moving along the x-axis where x(¢) is the position of the particle
at time ¢, x (¢) is its velocity, and x”(f) is its acceleration.
77. x(f) = P — 62 + 9t — 2, 0<tr<s

() Find the velocity and acceleration of the particle.

(b) Find the open t-intervals on which the particle is moving to
the right.

(c) Find the velocity of the particle when the acceleration is 0.

78. Repeat Exercise 77 for the position function
x(t) = (¢ = 1)~ 3)%

79. A particle moves along the x-axis at a velocity of v(t) = 1//1,
t > 0. Attime ¢t = 1, its position is x = 4. Find the acceleration
and position functions for the particle.

0 <,
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THE SuM OF THE FIrsT 100 INTEGERS

Carl Friedrich Gauss's (1777—1855) teacher
asked him to add all the integers from 1 to
100. When Gauss returned with the correct
answer after only a few moments, the teacher
could only look at him in astounded silence.

Integration

The following properties of summation can be derived using the associative and
commutative properties of addition and the distributive property of addition over

multiplication. (In the first property, & is a constant.)

L ﬁjka,. = kg,

i=1 =1

This is what Gauss did:

1+ 2+ 3+ -+ 100
100 + 99 + 98 + --- + 1
101 + 101 + 100 + --- + 101
100>2< 101 _ 5050

This is generalized by Theorem 4.2, where

100

100(101)

3i= = 5050.

- 3 ’-:-zl _n 2—; 3
10 0.65000
100 0.51500
1,000 0.50150
10,000 0.50015

2. ’El(a,. + b)) = iai + En:b,.
= =1

i=1

The next theorem lists some useful formulas for sums of powers. A proof of this
theorem is given in Appendix A.

THEOREM 4.2 Summation Formulas

n
1. Zt.' = on

=l i=1

" ‘l._ 2 1 - n 2 2
3, E"IE:E[’P IL{N 1) ; _n¥n+1)

EXAMPLE 2 Evaluating a Sum
L]

1 for n = 10, 100, 1000, and 10,000.

Evaluate E

i=1
Solution Applying Theorem 4.2, you can write
2i+ 1

Zl P 2(1+

=1

- (zf+z')

i=1 =1

nln +: l] —‘

Factor constant 1/n? out of sum.

Write as two sums.

I
R
_

Apply Theorem 4.2.
| [n> + 3n .
= —2 5 Simplify.
A Simplif
= 1mpliry.
n plly.

Now you can evaluate the sum by substituting the appropriate values of n, as shown
in the table at the left.

In the table, note that the sum appears to approach a limit as » increases. Although
the discussion of limits at infinity in Section 3.5 applies to a variable x, where x can
be any real number, many of the same results hold true for limits involving the
variable n, where n is restricted to positive integer values. So, to find the limit of
(n + 3)/2n as n approaches infinity, you can write

n+3 1
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Rectangle: A = bh
Figure 4.5

Triangle: 4 = %bh
Figure 4.6

Mary Evans Picture Library

ARCHIMEDES (287-212 B.C.)

Archimedes used the method of exhaustion to
derive formulas for the areas of ellipses,
parabolic segments, and sectors of a spiral.
He is considered to have been the greatest
applied mathematician of antiquity.

FOR FURTHER INFORMATION For an
alternative development of the formula for
the area of a circle, see the article “Proof
Without Words: Area of a Disk is mR?”
by Russell Jay Hendel in Mathematics
Magazine. To view this article, go to the
website www.matharticles.com.
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Area

In Euclidean geometry, the simplest type of plane region is a rectangle. Although
people often say that the formula for the area of a rectangle is A = bh, as shown in
Figure 4.5, it is actually more proper to say that this is the definition of the area of a
rectangle.

From this definition, you can develop formulas for the areas of many other plane
regions. For example, to determine the area of a triangle, you can form a rectangle
whose area is twice that of the triangle, as shown in Figure 4.6. Once you know
how to find the area of a triangle, you can determine the area of any polygon by
subdividing the polygon into triangular regions, as shown in Figure 4.7.

Parallelogram Hexagon Polygon

Figure 4.7

Finding the areas of regions other than polygons is more difficult. The ancient
Greeks were able to determine formulas for the areas of some general regions
(principally those bounded by conics) by the exhaustion method. The clearest
description of this method was given by Archimedes. Essentially, the method is a
limiting process in which the area is squeezed between two polygons—one inscribed
in the region and one circumscribed about the region.

For instance, in Figure 4.8 the area of a circular region is approximated by an
n-sided inscribed polygon and an n-sided circumscribed polygon. For each value of n
the area of the inscribed polygon is less than the area of the circle, and the area of the
circumscribed polygon is greater than the area of the circle. Moreover, as n increases,
the areas of both polygons become better and better approximations of the area of
the circle.

VAVAY
.

The exhaustion method for finding the area of a circular region
Figure 4.8

A process that is similar to that used by Archimedes to determine the area of a
plane region is used in the remaining examples in this section.
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. f)=—x2+5

ol . — o x
4 6 8 10
5 5 5 5

win

(a) The area of the parabolic region is greater
than the area of the rectangles.

S =-=x2+5

4 6 8 10
5 5 5 5

Wi

(b) The area of the parabolic region is less
than the area of the rectangles.

Figure 4.9

The Area of a Plane Region

Recall from Section 1.1 that the origins of calculus are connected to two classic
problems: the tangent line problem and the area problem. Example 3 begins the
investigation of the area problem.

EXAMPLE 3 Approximating the Area of a Plane Region

Use the five rectangles in Figure 4.9(a) and (b) to find two approximations of the area
of the region lying between the graph of

flx)=—-x2+5

and the x-axis between x = 0 and x = 2.

Solution

a. The right endpoints of the five intervals are %i, where i = 1, 2, 3, 4, 5. The width
of each rectangle is %, and the height of each rectangle can be obtained by evaluating
S at the right endpoint of each interval.

o3} [53H3 55HE
I

Evaluate f at the right endpoints of these intervals.
The sum of the areas of the five rectangles is

Height Width
—

3 (2i\ (2 P 2i\? 2 162

—]Z] = =1 + — | =—— = 648

,Zlf(5><5> | (2 +5](5) = 55 = oe8
Because each of the five rectangles lies inside the parabolic region, you can
conclude that the area of the parabolic region is greater than 6.48.

b. The left endpoints of the five intervals are %(z — 1), where i = 1,2, 3,4,5. The

width of each rectangle is %, and the height of each rectangle can be obtained by
evaluating f at the left endpoint of each interval.

Height ~ Width
———

S )3 -

Because the parabolic region lies within the union of the five rectangular regions,
you can conclude that the area of the parabolic region is less than 8.08.

By combining the results in parts (a) and (b), you can conclude that

6.48 < (Area of region) < 8.08. s————

NOTE By increasing the number of rectangles used in Example 3, you can obtain closer and
closer approximations of the area of the region. For instance, using 25 rectangles of width 2—25
each, you can conclude that

7.17 < (Area of region) < 7.49.



The region under a curve
Figure 4.10

fim)

The interval [a, b} is divided into n
subintervals of width Ax =

Figure 4.11

friim

b—a
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Upper and Lower Sums

The procedure used in Example 3 can be generalized as follows. Consider a plane
region bounded above by the graph of a nonnegative, continuous function y = flx), as
shown in Figure 4.10. The region is bounded below by the x-axis, and the left and right
boundaries of the region are the vertical lines x = a and x = b.
To approximate the area of the region, begin by subdividing the interval [a, b] into
n subintervals, each of width Ax = (b — a)/n, as shown in Figure 4.11. The
endpoints of the intervals are as follows.
a=x X, X, x,=b
A . — — ; e
a+ 0(Ax) <a+ 1(Ax) < a+2(Ax) < - - - < a+ n(Ax)

Because f is continuous, the Extreme Value Theorem guarantees the existence of a
minimum and a maximum value of f(x) in each subinterval.

f(m;) = Minimum value of f(x) in ith subinterval
f(M,) = Maximum value of f(x) in ith subinterval

Next, define an inscribed rectangle lying inside the ith subregion and a
circumscribed rectangle extending outside the ith subregion. The height of the ith
inscribed rectangle is f(m,) and the height of the ith circumscribed rectangle is f(M,).
For each i, the area of the inscribed rectangle is less than or equal to the area of the
circumscribed rectangle.

<Area of inscribed

Area of circumscribed)
rectangle

rectangle

) = som e < gion) =

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum
of the areas of the circumscribed rectangles is called an upper sum.

n
Lower sum = s(n) = 2 f(mi) Ax Area of inscribed rectangles
=

n
Upper sum = S (n) = E fM ,-) Ax Area of circumscribed rectangles
e
From Figure 4.12, you can see that the lower sum s(n) is less than or equal to the upper
sum S(n). Moreover, the actual area of the region lies between these two sums.

s(n) < (Area of region) < S(n)

; y=f) i g y=f)

/‘ R

Area of inscribed rectangles Area of region Area of circumscribed

is less than area of region. rectangles is greater than
area of region.

Figure 4.12
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A

fo)=x?

=i | 2 3

Inscribed rectangles

-

foy=x2

| — T i =X
-1 | 2 3

Circumscribed rectangles
Figure 4.13

EXAMPLE 4 Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of f(x) = x2 and
the x-axis between x = 0 and x = 2.

Solution  To begin, partition the interval [0, 2] into # subintervals, each of width

b—a 2-0 2

Ax =

n n n

Figure 4.13 shows the endpoints of the subintervals and several inscribed and
circumscribed rectangles. Because f is increasing on the interval [0, 2], the minimum
value on each subinterval occurs at the left endpoint, and the maximum value occurs
at the right endpoint.

Left Endpoints Right Endpoints
2 — 2 )
mi=0+(i—l)<z>=u Ml-=0+f<—>=&
n n n n

Using the left endpoints, the lower sum is

)= 3 fim)ax 4"”K>

i

(%) —2i+ 1)

z+2Q

I

=

-2
i
8

uM:

n3<
_ %{ n+ l}(Zn +1) 2[n(n + 1)] 4 n}
2
= i(”n- —~ 3n% + n)
3n
=8, 2,0 L
% n 3” OWET sum

Using the right endpoints, the upper sum is

s = S umse= 5[

(2 C)

Il
.M~

I
—

vﬂ.

Il
M=
TN
=w| oo
N—

o

8 [nn+ 1)2n + 1)
F[ 6 ]
%(2113 + 3n2 + n)

Il
w | oo
+
N

Upper sum

w
[ 8]



EXPLORATION

For the region given in Example 4,

evaluate the lower sum

8 4 4
s(n)_h3_n+3n2

and the upper sum

8 4 4
S(n)_3+n+3n2

for n = 10, 100, and 1000. Use your
results to determine the area of the
region.

J e\ b
[

The width of the ith subinterval is
Ax=x—x_,

Figure 4.14

X
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Example 4 illustrates some important things about lower and upper sums. First,
notice that for any value of 7, the lower sum is less than (or equal to) the upper sum.
g8 4 4 g8 4 4
W=3 5 *3a <37, 3250
Second, the difference between these two sums lessens as n increases. In fact, if you
take the limits as n — oo, both the upper sum and the lower sum approach '2-

Lower sum limit

. . (8 4 4 8
lim s(n) = lim <— = i W) =

n—00 n—co 3 g
nli)nolo S(n) = nli_)r{.lo (% + % + %) = % Upper sum limit

The next theorem shows that the equivalence of the limits (as # — co) of the upper
and lower sums is not mere coincidence. It is true for all functions that are continuous
and nonnegative on the closed interval [a, b]. The proof of this theorem is best left to
a course in advanced calculus.

THEOREM 4.3 Limits of the Lower and Upper Sums

Let f be continuous and nonnegative on the interval [a, b]. The limits as n — oo
of both the lower and upper sums exist and are equal to each other. That is,

lim s(n) = IHEO if(m,.)Ax

n—oe I= |
= Jlim 3, f(M) Ax
= lim S(n)

n—o0

where Ax = (b — a)/n and f(m,) and f(M,) are the minimum and maximum
values of f on the subinterval.

Because the same limit is attained for both the minimum value f(m;) and the
maximum value f(M,), it follows from the Squeeze Theorem (Theorem 1.8) that the
choice of x in the ith subinterval does not affect the limit. This means that you are free
to choose an arbitrary x-value in the ith subinterval, as in the following definition of
the area of a region in the plane.

Definition of the Area of a Region in the Plane

Let f be continuous and nonnegative on the interval [a, b]. The area of the
region bounded by the graph of f, the x-axis, and the vertical lines x = @ and
x=bis

where Ax = (b — a)/n (see Figure 4.14).
| L L

Area = lim > fle)Ax, xS

i=1
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In Exercises 23-26, bound the area of the shaded region by
approximating the upper and lower sums. Use rectangles of
width 1,

23, v 24, ¥

25. >

—

[ IV R O

In Exercises 27-30, use upper and lower sums to approximate
the area of the region using the given number of subintervals (of
equal width).

27. y = JUx 28. y=J/x+2

i

1
== = — 2
29. y x 30. y 1—x

In Exercises 31-34, find the limit of s(r) as n — co.

31, s(n) = il [rﬂ(n + 1) ]

32, s(n) = ’614 {n(nj#-_l)]

In Exercises 35-38, use the summation formulas to rewrite the
expression without the summation notation. Use the result to
find the sum for » = 10, 100, 1000, and 10,000,

n 7 n i +

35 321 36. 313
=eon =
& 6k(k — 1) < 412(1

S 5. 34

k=1 i=

In Exercises 39-44, find a formula for the sum of n terms. Use
the formula to find the limit as n — oo.

39, lim 3 % 40. lim (ﬁ (3)
n—oo = H "_>°°i: n n
. ga il . & 2i\3(2
DL a1 31+ 2)(2)

. 4 i\(2 i 4 2i\3 (2
43, "11)11.10 i;(l + n>(n> 44, nli)rgo i21<1 n) <n>

45. Numerical Reasoning Consider a triangle of area 2 bounded
by the graphs of y = x, y = 0, and x = 2.

(a) Sketch the region.

(b) Divide the interval [0, 2] into n subintervals of equal width
and show that the endpoints are

o< 1@ e 0 af2)
o ot = $- {22

= 5[ CIR)

(e) Complete the table.

(d) Show that S(n

n 5 10 50 100
s(n)
S(n)

(f) Show that lim s(n) = lim S(n) = 2.

n—oo H—00
46. Numerical Reasoning Consider a trapezoid of area 4 bounded
by the graphsof y = x, y = 0, x = 1, and x = 3.
(a) Sketch the region.

(b) Divide the interval [1, 3] into » subintervals of equal width
and show that the endpoints are

1<1+1<%)< ~<1+(n—1)<2><1+n<%>.

(c) Show that s(n) = i[ + (i - 1)( )}(Z)

i=1

[ GG

(e) Complete the table.

(d) Show that S(n) =

n 5 10 50 100
s(n)
S(n)

(f) Show that hm s(n) = lim S(n) = 4,

n—oo



In Exercises 4756, use the limit process to find the area of the
region between the graph of the function and the x-axis over the
given interval. Sketch the region.

47. y = —2x + 3, [0,1]
49, y = x> +2, [0,1]
51. y =16 — &%, [L,3]
53. y =64 —x%, [1,4]
55. y=x2—x3, [—1,1]

48. y=3x—4, [2,5]
50. y=x2+ 1, [0,3]
52 y=1-x [~1,1]
54. y=2x—x°, [0,1]
56. y =x2— x%, [—1,0]

In Exercises 57-62, use the limit process to find the area of the
region between the graph of the function and the y-axis over the
given y-interval. Sketch the region.

57. f(y) =3y,0<y<2 58. g(y) =50,2<y<4

59. f(y) =»,0<y<3 60. f(y) =4y —»,1<y<2
6. g(y) =42 -y, 1 <y<362 h(y)=y+1,1sy<2

In Exercises 63—66, use the Midpoint Rule
< X, + X,
Area = ‘21 f (——2 )Ax

with n = 4 to approximate the area of the region bounded
by the graph of the function and the x-axis over the given inter-
val.

63. f(x) =x2+3, [0,2]

65. f(x) = tanx, [0, ﬂ

64. f(x) = x2+ 4x, [0,4]

66. f(x) = sinx, [o, %T]

PP' Programming Write a program for a graphing utility to

approximate areas by using the Midpoint Rule. Assume that the
function is positive over the given interval and the subintervals
are of equal width. In Exercises 67-70, use the program to
approximate the area of the region between the graph of the func-
tion and the x-axis over the given interval, and complete the table.

n 4 8 12 | 16 | 20

Approximate Area

67. fx) = Vx, [0,4] 68. f(x) = (2, 6]

x2+1

69. f(x) = tan<%x>, [1,3]  70. f(x) = cos Vx [0,2]

Writing About Concepts

Approximation TIn Exercises 71 and 72, determine which
value best approximates the area of the region between the
x-axis and the graph of the function over the given interval.
(Make your selection on the basis of a sketch of the region
and not by performing calculations.)

7. f(x) =4 — 22, [0,2]
@-2 M6 ©10 (D3 ()8
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Writing About Concepts (continued)

72. f(x) = sin "Tx, [0, 4]

@3 m1 -2 @8 (6

73. In your own words and using appropriate figures, describe
the methods of upper sums and lower surns in approximating
the area of a region.

74. Give the definition of the area of a region in the plane.

75. Graphical Reasoning Consider the region bounded by the
graphs of

8x
x+ 1

flx) =

x=0, x=4, and y =0, as shown in the figure. To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) Redraw the figure, and complete and shade the rectangles
representing the lower sum when n = 4. Find this lower sum.

(b) Redraw the figure, and complete and shade the rectangles
representing the upper sum when n = 4. Find this upper
sum.

(¢) Redraw the figure, and complete and shade the rectangles
whose heights are determined by the functional values at
the midpoint of each subinterval when n = 4. Find this sum
using the Midpoint Rule.

(d) Verify the following formulas for approximating the area of
the region using n subintervals of equal width.

Lower sum: s(n) = zlf [(i B 1)%] <%>
Upper sum: S(n) = iilf [(l) %} (%)
Midpoint Rule: M(n) = 'ilf [(l - %) %:l (%)

PJF’ (e) Use a graphing utility and the formulas in part (d) to
complete the table.

n 4 8 20 | 100 | 200
s(n)
S(n)
M(n)
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76.

True or False?

CHAPTER 4 Integration

(f) Explain why s(n) increases and S§(n) decreases for
increasing values of 7, as shown in the table in part (e).

Monte Carlo Method The following computer program
approximates the area of the region under the graph of a mono-
tonic function and above the x-axis between x = @ and x = b.
Run the program for a = 0 and b = /2 for several values of
N2. Explain why the Monte Carlo Method works. [Adaptation
of Monte Carlo Method program from James M. Sconyers,
“Approximation of Area Under a Curve; MATHEMATICS
TEACHER 77, no. 2 (February 1984). Copyright © 1984 by
the National Council of Teachers of Mathematics. Reprinted
with permission.)

10 DEF FNF(X)=SIN(X)

20 A=0

30 B=n/2

40 PRINT “Input Number of Random Points”
50 INPUT N2

60 NI=0

70 IF  FNF(A)>FNF(B)
YMAX=FNF(B)

80 FOR I=I TO N2
90  X=A+(B-A)*RND(l)
100 Y=YMAX*RND(1)
110 IF Y>=FNF(X) THEN GOTO 130
120 NI1=NI1+1
130 NEXTI
140 AREA=(NI/N2)*(B-A)*YMAX
150 PRINT “Approximate Area:”; AREA
160 END

THEN YMAX=FNF(A) ELSE

In Exercises 77 and 78, determine whether the

statement is true or false, If it is false, explain why or give an
example that shows it is false.

77.
78.

79.

The sum of the first n positive integers is n(n + 1)/2.

If f is continuous and nonnegative on [, b], then the limits as
n—oo of its lower sum s(n) and upper sum S(n) both exist and
are equal.

Writing  Use the figure to write a short paragraph explaining
why the formula 1 + 2 + - - - + n = 3n(n + 1) is valid for
all positive integers n.

Figure for 79 Figure for 80

80.

PF’ 81.

Figure for 81
82.

83.

Graphical Reasoning Consider an n-sided regular polygon
inscribed in a circle of radius r. Join the vertices of the polygon to
the center of the circle, forming n congruent triangles (see figure).

(a) Determine the central angle 8 in terms of 7.
(b) Show that the area of each triangle is %rz sin 6.

(c) Let A, be the sum of the areas of the n triangles. Find
lim A,.

n—o0
Modeling Data The table lists the measurements of a lot
bounded by a stream and two straight roads that meet at right
angles, where x and y are measured in feet (see figure).

x 0 50 | 100 | 150 | 200 | 250 | 300

y | 450 | 362 | 305 | 268 | 245 | 156 | O

(a) Use the regression capabilities of a graphing utility to find
a model of the form y = ax® + bx2 + cx + d.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model in part (a) to estimate the area of the lot.

y
Road

Stream
7

f n1s even.

T T T I I ]
50 100 150 200 250 300
Figure for 82

Building Blocks A child places n cubic building blocks in a
row to form the base of a triangular design (see figure). Each
successive row contains two fewer blocks than the preceding
row. Find a formula for the number of blocks used in the
design. (Hint: The number of building blocks in the design
depends on whether 7 is odd or even.)

Prove each formula by mathematical induction. (You may need
to review the method of proof by induction from a precalculus
text.)

(a) 5221' =nln + 1)

=1
® 3= 1’2—(”: )’

i=1

Putnam Exam Challenge

84.

A dart, thrown at random, hits a square target. Assuming that
any two parts of the target of equal area are equally likely to be
hit, find the probability that the point hit is nearer to the center
than to any edge. Write your answer in the form (a\/E + c) /d,
where a, b, ¢, and d are positive integers.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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The subintervals do not have equal widths.

Figure 4.18
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The area of the region bounded by

the graph of x = y2 and the y-axis for
0<ys< lish,

Figure 4.19
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Riemann Sums and Definite Integrals

¢ Understand the definition of a Riemann sum.
e Evaluate a definite integral using limits.
e Evaluate a definite integral using properties of definite integrals.

Riemann Sums

In the definition of area given in Section 4.2, the partitions have subintervals of equal
width. This was done only for computational convenience. The following example
shows that it is not necessary to have subintervals of equal width.

EXAMPLE | A Partition with Subintervals of Unequal Widths

Consider the region bounded by the graph of f(x) = Vx and the x-axis for
0 < x < 1, as shown in Figure 4.18. Evaluate the limit

lim En: fle,) Ax;
=1

n—oo H

where c, is the right endpoint of the partition given by ¢, = i*/n” and Ax; is the width
of the ith interval.

Solution The width of the ith interval is given by
12 P — 1)2
Ax, == — G- 17 5 )

i 2

n n
-2+ 2i— 1
n2
_2i—1
n2

So, the limit is

n

_ s i
lim ]f(c,.) Ax; = lim 2 2 (——)

n—00 /=

= lim %[2<n(n + 1)2n + 1)) ~nln + 1)]
n—>co 1 6 2
~ lim 4n’ + 3n* —n
0 fm-‘
_2
-3 —

From Example 7 in Section 4.2, you know that the region shown in Figure 4.19
has an area of % Because the square bounded by 0 < x < 1 and 0 < y < 1 has an
area of 1, you can conclude that the area of the region shown in Figure 4.18 has an
area of % This agrees with the limit found in Example 1, even though that example
used a partition having subintervals of unequal widths. The reason this particular
partition gave the proper area is that as n increases, the width of the largest subinterval
approaches zero. This is a key feature of the development of definite integrals.
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The Granger Collection

GEORG FRIEDRICH BERNHARD RIEMANN
(1826-1866)

German mathematician Riemann did his most
famous work in the areas of non-Euclidean
geometry, differential equations, and number
theory. It was Riemann’ results in physics and
mathematics that formed the structure on
which Einstein’s theory of general relativity
is based.

flal| = L

QO [r— =
N
M=

n— oo does not imply that || A || — 0.
Figure 4.20

In the preceding section, the limit of a sum was used to define the area of a region
in the plane. Finding area by this means is only one of many applications involving
the limit of a sum. A similar approach can be used to determine quantities as diverse
as arc lengths, average values, centroids, volumes, work, and surface areas. The
following definition is named after Georg Friedrich Bernhard Riemann. Although the
definite integral had been defined and used long before the time of Riemann, he
generalized the concept to cover a broader category of functions.

In the following definition of a Riemann sum, note that the function f has no
restrictions other than being defined on the interval [a, b]. (In the preceding section,
the function f was assumed to be continuous and nonnegative because we were
dealing with the area under a curve.)

: —_ S

Definition of a Riemann Sum

Let f be defined on the closed interval [a, b], and let A be a partition of [a, b]
given by

A=Xy <X <X, < :-<X,  <x,=b

where Ax; is the width of the ith subinterval. If ¢, is any point in the ith sub-
interval, then the sum

1

1

f(ci) A Ty X (<S¢ £y
1

It

i

| is called a Riemann sum of f for the partition A.

NOTE  The sums in Section 4.2 are examples of Riemann sums, but there are more general
Riemann sums than those covered there.

The width of the largest subinterval of a partition A is the norm of the partition
and is denoted by ||A|. If every subinterval is of equal width, the partition is regular
and the norm is denoted by

== 2=l

Regular partition

For a general partition, the norm is related to the number of subintervals of [a, b] in
the following way.
b—a

- " < ~ -al partiti
“AH < n General purtition

So, the number of subintervals in a partition approaches infinity as the norm of the
partition approaches 0. That is, [|A|| = 0 implies that n — co.
The converse of this statement is not true. For example, let A, be the partition of
the interval [0, 1] given by
1 1 1

0<—«< <---<—<l<l<]
s Rl 8§ 4 2 ’

As shown in Figure 4.20, for any positive value of n, the norm of the partition A, is %
So, letting n approach infinity does not force ||Al| to approach 0. In a regular partition,
however, the statements [|Al| — 0 and n — co are equivalent.
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Definite Integrals

To define the definite integral, consider the following limit.
i, 2 Fle) % = L

To say that this limit exists means that for £ > 0 there exists a § > 0 such that for
every partition with [|A]| < & it follows that

L— if(ci) Ax,| < e.

i=1

(This must be true for any choice of ¢; in the ith subinterval of A)

FOR FURTHER INFORMATION For Definition of a Definite Integral
insight into the history of the definite
integral, see the article “The Evolution
of Integration” by A. Shenitzer and J.

If f is defined on the closed interval [a, b] and the limit

lim i fle,) Ax;

Steprans in The American Mathematical lalI—0 &4
Monthly. To view this article, go to the
website www.matharticles.com. exists (as described above), then f is integrable on [a, b] and the limit is
denoted by
n b
||15|I—r>10 121 f(Ci) Ax; L flx) dx.

The limit is called the definite integral of f from a to b. The number « is the
lower limit of integration, and the number b is the upper limit of integration.

It is not a coincidence that the notation for definite integrals is similar to that used
for indefinite integrals. You will see why in the next section when the Fundamental
Theorem of Calculus is introduced. For now it is important to see that definite
integrals and indefinite integrals are different identities. A definite integral is a
number, whereas an indefinite integral is a family of functions.

A sufficient condition for a function f to be integrable on [a, b] is that it is
continuous on [a, b]. A proof of this theorem is beyond the scope of this text.

THEOREM 4.4 Continuity Implies Integrability

If a function f is continuous on the closed interval [a, b], then f is integrable
on [a, b].

EXPLORATION

The Converse of Theorem 4.4 s the converse of Theorem 4.4 true? That is, if a
function is integrable, does it have to be continuous? Explain your reasoning and
give examples.

Describe the relationships among continuity, differentiability, and integrability.
Which is the strongest condition? Which is the weakest? Which conditions imply
other conditions?
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/

Because the definite integral is negative, it
does not represent the area of the region.
Figure 4.21

— o - X
/u b

You can use a definite integral to find the
area of the region bounded by the graph of
f, the x-axis, x = g,and x = 5.

Figure 4.22

EXAMPLE 2  Evaluating a Definite Integral as a Limit

1

Evaluate the definite integral j 2x dx.

-2

Solution  The function f(x) = 2x is integrable on the interval [—2, 1] because it is
continuous on [—2, 1]. Moreover, the definition of integrability implies that any par-
tition whose norm approaches 0 ¢an be used to determine the limit. For computational
convenience, define A by subdividing [—2, 1] into n subintervals of equal width

Ax, = Ax = =2
n n

Choosing c; as the right endpoint of each subinterval produces
c;=a+i(Ax) = —2+%.
So, the definite integral is given by

1 n
f 2xdx = lim Y f(c;) Ax,
=

Y llal—o

lim Ef(ci) Ax
n—oo &4

. i 3iV(3
im 322+ 3)0)

i’L—)OOI’[l_l n
= lim —{—Zn + é[n(n b 1)]}
n—co 1 n 2
. 9
= lim |12 +9+ =
n—oo n
= —3. —

Because the definite integral in Example 2 is negative, it does not represent the
area of the region shown in Figure 4.21. Definite integrals can be positive, negative,
or zero. For a definite integral to be interpreted as an area (as defined in Section 4.2),
the function f must be continuous and nonnegative on [a, b, as stated in the following
theorem. (The proof of this theorem is straightforward—you simply use the definition
of area given in Section 4.2.)

THEOREM 4.5 The Definite Integral as the Area of a Region

If f is continuous and nonnegative on the closed interval [a, b], then the area of
the region bounded by the graph of f, the x-axis, and the vertical lines x = a
and x = b is given by

b
Area = f flx) dx.

(See Figure 4.22.)




fo)y=4x— X2

4
Area = j (4x — x%) dx
0
Figure 4.23

NOTE The variable of integration in
a definite integral is sometimes called
a dummy variable because it can be
replaced by any other variable without
changing the value of the integral. For
instance, the definite integrals

fu+mw

0

and

f(r+2)dt

have the same value.
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As an example of Theorem 4.5, consider the region bounded by the graph of
flx) = dx — x2

and the x-axis, as shown in Figure 4.23. Because f is continuous and nonnegative on
the closed interval [0, 4], the area of the region is

4
Area = J (4x — x?) dx.
0

A straightforward technique for evaluating a definite integral such as this will be
discussed in Section 4.4. For now, however, you can evaluate a definite integral in two
ways—you can use the limit definition or you can check to see whether the definite
integral represents the area of a common geometric region such as a rectangle, triangle,
or semicircle.

EXAMPLE 3 Areas of Common Geometric Figures

Sketch the region corresponding to each definite integral. Then evaluate each integral
using a geometric formula.

3 3
a.f4dx b.J (x + 2) dx
1 0

Solution A sketch of each region is shown in Figure 4.24.

2
c.f V4 — xtdx
=l

a. This region is a rectangle of height 4 and width 2.

3
f 4 dx = (Area of rectangle) = 4(2) = 8
1

b. This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and
5. The formula for the area of a trapezoid is 54(b, + b,).

3
J’ (x + 2) dx = (Area of trapezoid) = %(3)(2 +5) = %
0

¢. This region is a semicircle of radius 2. The formula for the area of a semicircle is
1
smr.

2
f V4 — x% dx = (Area of semicircle) = %77(22) =27
—2

Y fm=4 Y fwy=x+2
!

oW

(@ (b)
Figure 4.24
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Properties of Definite Integrals

The definition of the definite integral of £ on the interval [a, b] specifies that a < b.
Now, however, it is convenient to extend the definition to cover cases in which a = b
ora > b. Geometrically, the following two definitions seem reasonable. For instance,
it makes sense to define the area of a region of zero width and finite height to be 0.

Definitions of Two Special Definite Integrals

1. If f is defined at x = a, then we define f fx)dx = 0.

a b
2. If f is integrable on [a, ], then we define J fx)dx = — f flx) dx.
b

a

:ww—vﬂ_ D EXAMPLE 4  Evaluating Definite Integrals
. - .

a. Because the sine function is defined at x = 7, and the upper and lower limits of
integration are equal, you can write

f sinx dx = 0.

m

b. The integral f3°(x + 2) dx is the same as that given in Example 3(b) except that the
upper and lower limits are interchanged. Because the integral in Example 3(b) has
a value of %, you can write

Lo(ﬁz)dx:—jj(ﬁz)dx:—ﬂ.

2 T

J-"”A_) dx In Figure 4.25, the larger region can be divided at x = ¢ into two subregions
4, whose intersection is a line segment. Because the line segment has zero area, it

) follows that the area of the larger region is equal to the sum of the areas of the two
g smaller regions.

THEOREM 4.6 Additive Interval Property ‘

If f is integrable on the three closed intervals determined by a, b, and ¢, then

[ a c b

: [rera= | rwac+ [ 1

=

[ + ['f0) ax

Figure 4.25
EXAMPLE 5 Using the Additive Interval Property

1 0 1
f ]xl dx =J —xdx +fxdx Theorem 4.6
=i —1 (4]
1 1

= = Area of a triangle

B
=1



a b

L b fx) dx < f g(x) dx

Figure 4.26

=X
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Because the definite integral is defined as the limit of a sum, it inherits the
properties of summation given at the top of page 260.

THEOREM 4.7 Properties of Definite Integrals

If f and g are integrable on [a, b] and k is a constant, then the functions of kf
and f + g are integrable on [a, b], and

1. fkf(x)dx=kff(x)dx

2. (1 = st s = [[rwas [ B

Note that Property 2 of Theorem 4.7 can be extended to cover any finite number of
functions. For example,

b

J;b[f(x)+g(x)+h(x)]dx=ff(x)danfg(x)dx.;.J h(x) dx.

a

EXAMPLE 6 Evaluation of a Definite Integral

3

Evaluate f (—x2 + 4x — 3) dx using each of the following values.
1

3 3 3
szdx=§, dex=4, de=2
1 3 1 1

Solution

f3 (—x2+4x — 3)dx = ja (—x®)dx + J34xdx+ J'3 (=3) dx

3 3 3
—fodx+4fxdx—-3jdx
1 1 1

26

—(?) T 44) - 30)

]

<
3

If f and g are continuous on the closed interval [a, b] and

0 < flx) < glx)

for a < x < b, the following properties are true. First, the area of the region bounded
by the graph of f and the x-axis (between a and b) must be nonnegative. Second, this
area must be less than or equal to the area of the region bounded by the graph of g and
the x-axis (between a and b), as shown in Figure 4.26. These two results are generalized
in Theorem 4.8. (A proof of this theorem is given in Appendix A.)
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THEOREM 4.8 Preservation of Inequality

1. If f is integrable and nonnegative on the closed interval [a, b], then

sff(x)dx

2. If f and g are integrable on the closed interval [a, b] and f(x) < g(x) for
every x in [a, b], then

f ) f o) d

See www CalcChat.com for worked-out solutions to odd-numbered exercises

Exercises for Section 4.3

In Exercises 1 and 2, use Example 1 as a model to evaluate the In Exercises 13—22, set up a definite integral that yields the area
limit of the region. (Do not evaluate the integral.)
lim if(c,.)Ax,. 13, f(x) =3 14, f(x) = 4 — 2x
n— oo /&Y
y y
over the region bounded by the graphs of the equations. 5. 4.
Lfx)=Vx, y=0, x=0, x=3 47 3.
|
(Hint: Let ¢; = 3i%/n.) 1 2
2. f)=3x y=0, x=0, x=1 2 |
(Hint: Letc; = i*/n’.) b
== +— I =
1 2 3 4 5 -1 1 2 3

In Exercises 3-8, evaluate the definite integral by the limit
definition. 15. f(x) = 4 — |5 16. f(x) = x?

10 3
3. f 6 dx - J- Xy
4 -2

1 3
5.f X dx IS.I dx 64 3
~1

s

2 2=
7. f O+ 1) ax f (3x% + 2) dx )
1
| -x bt b e x
In Exercises 9-12, write the limit as a definite integral on the 2 4 -1 12 3
interval [a, b], where c; is any point in the ith subinterval.
Limit Interval 17. f(x) = 4 — »2 18. flx) = 1
¥ y
9, lim (3¢; + 10) Ax, -1,5 y
lal—o0 :2 : ]
n 2 - =
10. lim 6c;(4 — ¢;)? Ax, 0,4
lal—o izl [0, 4]
lim Vel +4A 0,3
i) 12 X; [0, 3] /\
n 3 e T—
12, lim <—)A . 1,3 oy =
lal-0 ,-Zl ) [1.3] 12 ! :




19. f(x) = sinx 20. f(x)

y Y
' A
l
|

= tan x

In Exercises 23-32, sketch the region whose area is given by the
definite integral. Then use a geometric formula to evaluate the
integral (a > 0,r > 0).

3 a
23. f 4 dx 24.[ 4 dx
04 ‘4(lx
25. f x dx 26. f —dx
0 o 2
7l 8
27. j (2x + 5) dx 28. (8 — x) dx
0
1
29. (1 — |x]) dx 30. J (a — |¥])dx
31. f V9 = 22 dx 32. f ST = K2 dy

In Exercises 33—40, evaluate the integral using the following
values.

4 4 4
jx3dx=60, jxdx=6, de=2
2 2 2

2
33. jxdx
4

2
34, J x3 dx
2

4
35. f4xdnx
4
36. J 15 dx
37. f(x — 8) dx
2

4
38. j (x> + 4) dx
2
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39.

40.

41.

42,

43.

44.

45.

46.
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4
j(%x3—3x+2)dx

4
J(6+2x—x3)dx

2

Given fosf(x) dx = 10 and f:f(x) dx = 3, evaluate

(@) L flx) dx

5

(© ; fx) dx.

(b) J; 0f (x) dx.

@ f 3f(x) dx

Given f: £(x) dx = 4 and f: £(x) dx = — 1, evaluate
@ [ 1wa o [ soa

d J: —5f(x) dx
Given j: £(9) dx = 10 and f; () dx = —2, evaluate
@ [+ ena o | "Leta) — 5] .
© [ 2star @ [ywa
Given f_'l F() dx = 0 and fol £(x) dx = 5, evaluate

o [ swa- [ e

1 !
© [ ywa @ [ e

Use the table of values to find lower and upper estimates of

10
J flx) dx
0

Assume that f is a decreasing function.

0
@ | f&)dx
=i

x 0 2 4 6 8

fx) | 32 24 12 —4 -20

—36 ‘

Use the table of values to estimate

f Fx) dx.

Use three equal subintervals and the (a) left endpoints, (b) right
endpoints, and (c) midpoints. If f is an increasing function,
how does each estimate compare with the actual value? Explain

your reasoning.
‘]

80|

x | o] 1]2]|3]|4]S5
f@) | -6 o | 8 | 18[30] 50
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47. Think About It The graph of f consists of line segments and
a semicircle, as shown in the figure. Evaluate each definite
integral by using geometric formulas.

“4,2)

4,-1)

(@) f () dx
]

2

(c) f flx) dx
L

(e) j |/ (x)] dv
—4

48. Think About It The graph of f consists of line segments, as
shown in the figure. Evaluate each definite integral by using
geometric formulas.

(b) f Tl dx
() f Jlx) dx

() Jh [F(x) + 2] dx
4

y

G2 42

=N W A

-1
-2
-3 -
-4

I g
(@ f —f(x) dx (b) f 3 f(x) el
0 1
7

T
(d) f Jx) dy
5 .

Il 5!11
e | fx)dx (f) j F) dy
4

49. Think About It Consider the function S that is continuous on
the interval [—5, 5] and for which

fjf(x) dx = 4.

Evaluate each integral.

5
@ [0+ 218
3
(h) fl +2) dx
2
(c) f S0 dx (f is even.)
-

5
(@ f Fx) dx (f is odd.)
=5

50. Think About It A function f is defined below. Use geometric
formulas to find f; £(x) dx.

) ={4, x < 4

x, x=24

Writing About Concepts
In Exercises 51 and 52, use the figure to fill in the blank with

the symbol <, >, or =.

51. The interval [1, 5] is partitioned into 7 subintervals of equal
width Ax, and x; is the left endpoint of the ith subinterval.

| o

52. The interval [1, 5] is partitioned into n subintervals of equal
width Ax, and x; is the right endpoint of the ith subinterval.

Ellf(xi) Ax

ilf(xi) Ax ﬁ fx) dx

! a is integrable

53. Determine whether the function f(x) =

on the interval [3, 5]. Explain.

54. Give an example of a function that is integrable on the
interval [—1, 1], but not continuous on [— 1, 1].

In Exercises 5558, determine which value best approximates
the definite integral. Make your selection on the basis of a
sketch.

55. fﬁdx

(:) 5 (b) -3 (c) 10 ) 2 (e) 8
56. J.]/24 cos 7x dx

<;> 4 B3 ©16 @27 () -6
57. fl 2 sin 7x dx

<:> 6 3 @©4 @3
58. f(u V) dx

@-3 ®m9Y @©27 @3



HV Programming Write a program for your graphing utility to

approximate a definite integral using the Riemann sum

Zf(ci) Ax,

where the subintervals are of equal width. The output should
give three approximations of the integral where ¢; is the left-
hand endpoint L(z), midpoint M(r), and right-hand endpoint
R(n) of each subinterval. In Exercises 59-62, use the program
to approximate the definite integral and complete the table.

n 4 8 12 16 20—]
L(n)
M(n)
R(n)

3 3
59. J x~/3 — xdx 60. J —25—-dx
0 o x>+ 1

3
62. f x sin x dx

w2
61. f sin? x dx
0 0
True or False? TIn Exercises 63—68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

b

2. f 46 + g0 dx = ff(x)dx + [ ot ax

w

a

. f " ogsr e = [ [0 an]] [ st r

65. If the norm of a partition approaches zero, then the number of
subintervals approaches infinity.

6

iy

66. If f is increasing on [g, b], then the minimum value of f(x) on
[a, b]is fla).
67. The value of

[ lb £6) d

must be positive.
68. The value of

2
J sin {x?) dx
2
is 0.
69. Find the Riemann sum for
flx) = x2 + 3x

over the interval [0, 8], where x, = 0, x; = 1, x, = 3,33 = 7,
and x, = 8,and where ¢, = 1,¢, = 2,¢3 = 5, and ¢, = 8.
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70.

71.

72.

73.

74.

75.

76.

77.
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1.5

-15

Figure for 69 Figure for 70

Find the Riemann sum for f(x) = sinx over the interval
[0,27], where x, =0, x, = /4, x, = w/3, x; = m, and
x, = 2m, and where ¢, = /6, ¢; = m/3, ¢3 = 27/3, and
¢y = 37/2.
b2 — a2

T
P -

3
Think About It Determine whether the Dirichlet function

1) = {(1)

b
Prove that f xdx =
a

b
Prove that f x2dx =
a

x is rational
x is irrational

is integrable on the interval [0, 1]. Explain.

Suppose the function f is defined on [0, 1], as shown in the
figure.

0, x=20
Fa =11 D<x<1
X
0]
40|
3.0-‘
2.0

1.0
a * T
=05 | 05 1.0 1.5 20

Show that f(} f(x) dx does not exist. Why doesn’t this contradict
Theorem 4.4?

Find the constants @ and b that maximize the value of

[a-sa

a

Explain your reasoning.
2
Evaluate, if possible, the integral j [ ax.
0

Determine

lim %[12+22+32+--

n—oo

'+Vl2]

by using an appropriate Riemann sum.
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EXPLORATION

Integration and Antidifferentiation
Throughout this chapter, you have been
using the integral sign to denote an
antiderivative (a family of functions)
and a definite integral (a number).

Antidifferentiation: f fx) dx

b
Definite integration: f f(x) dx

The use of this same symbol for both
operations makes it appear that they
are related. In the early work with
calculus, however, it was not known
that the two operations were related.
Do you think the symbol [ was first
applied to antidifferentiation or to
definite integration? Explain your
reasoning. (Hint: The symbol was
first used by Leibniz and was derived
from the letter S.)

The Fundamental Theorem of Calculus

* Evaluate a definite integral using the Fundamental Theorem of Calculus.
* Understand and use the Mean Value Theorem for Integrals.

* Find the average value of a function over a closed interval.

* Understand and use the Second Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus

You have now been introduced to the two major branches of calculus: differential
caleulus (introduced with the tangent line problem) and integral caleulus (introduced
with the area problem). At this point, these two problems might seem unrelated—but
there is a very close connection. The connection was discovered independently by
Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately
called the Fundamental Theorem of Calculus.

[nformally, the theorem states that differentiation and (definite) integration are
inverse operations, in the same sense that division and multiplication are inverse
operations. To see how Newton and Leibniz might have anticipated this relationship,
consider the approximations shown in Figure 4.27. The slope of the tangent line was
defined using the quotient Ay/Ax (the slope of the secant line). Similarly, the area of
a region under a curve was defined using the product AyAx (the area of a rectangle),
So, at least in the primitive approximation stage, the operations of differentiation and
definite integration appear (o have an inverse relationship in the same sense that
division and multiplication are inverse operations. The Fundamental Theorem of
Calculus states that the limit processes (used to define the derivative and definite
integral) preserve this inverse relationship.

1Y

]
]
1
I
.
)
L}
i
|
|
line !
]
1
]
I
]
]
L}
1

Ayd Fangent Area of
/Secant resTon
If./ line un%ier
] curve
_______ A “y__a ___"“;_. T
Slope = Ax Slope = == Area=AyAx Area = AyAx

(a) Differentiation (b) Definite integration

Differentiation and definite integration have an “inverse”relationship.
Figure 4.27

THEOREM 4.9 The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, »] and F is an antideriva-
tive of f on the interval [a, b], then

f7f(x) dx = F(b) — F(a).




SECTION 4.4 The Fundamental Theorem of Calculus 283

Proof The key to the proof is in writing the difference F(b) — F(a) in a convenient
form. Let A be the following partition of [a, b].

Aa=Xy <X <Xy <‘' ' <X_;<x,=b
By pairwise subtraction and addition of like terms, you can write

F(b) — Fla) = F(x,) — F(x,_) + Flx,_) —- - - — F(x)) + F(x)) — Flxp)

n—1

= S [Fx) — Flx, )]

i=1

By the Mean Value Theorem, you know that there exists a number ¢, in the ith subin-
terval such that

F(x[) b F(x[,])'

Fie) = % — B
i T X

f

Because F'(c;) = f(c;), you can let Ax; = x; — x,_, and obtain
F(b) — Fla) = Ef(cl) Ax;.
=

This important equation tells you that by applying the Mean Value Theorem you can
always find a collection of ¢;’s such that the constant F(b) — F(a) is a2 Riemann sum
of £ on [a, b]. Taking the limit (as ||Al| = 0) produces

F(b) - F(a) n J f(.X') dx. —

The following guidelines can help you understand the use of the Fundamental
Theorem of Calculus.

Guidelines for Using the Fundamental Theorem of Calculus

1. Provided you can find an antiderivative of f, you now have a way to evaluate
a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the following notation
is convenient.

f 1) dx = F(x)]
= F(b) — F(a)

For instance, to evaluate [} x3 dx, you can write

3 473 4 4
s, X _ 3 _1*_81_ 1_
J:xdx 4]] 4 4 4 4 20.

3. It is not necessary to include a constant of integration C in the antiderivative
because

Lbf(x) dx = [F(x) + C]

= [F(b) + C] — [F(a) + C]
= F(b) — F(a).

b

a
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@ EXAMPLE |  Evaluating a Definite Integral

y y=|2x—1|

y=—(2x-1) y=2-1

The definite integral of y on [0, 2] is 3.
Figure 4.28

=~

‘ y=2x2-3x+2
4

i- — f — ]

I 2 3 4
The area of the region bounded by the graph
of y, the x-axis, x = 0, and x = 21is '70
Figure 4.29

Evaluate each definite integral.

2 4 /4
a. f (x2 — 3) dx b. f 3V/x dx c. f sec? x dx
1 1 4]

Solution

[e-vas o] (-9 - (-3)

4 4 X3/2 4
b. J 3Vxdx = 3] x2 dx = 3[—] = 2(402 — 2(1)* = 14
1 1 3/21

T/4

/4
c.f sec2xdx=tanx} =1-0=1
) 0

EXAMPLE 2 A Definite Integral Involving Absolute Value
R

2
Evaluate f |2x — 1] dx.

0

Solution  Using Figure 4.28 and the definition of absolute value, you can rewrite the
integrand as shown.

—2x -1
|2x—1|={ 3 —1). x<
2x -1, x 2
From this, you can rewrite the integral in two parts.

2 1/2 2
f |2x — 1|dx =J —-(2x - 1) dx+f (2x — Ddx
0 ) 1

/2

1/2 2
=[—x2+x] +[x2—x]
0 12

=(—%+%>—(0+0)+(4—2)—(%—%>=§

B— p—

EXAMPLE 3 Using the Fundamental Theorem to Find Area
R

Find the area of the region bounded by the graph of y = 2x2 — 3x + 2, the x-axis,
and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

Solution  Note that y > 0 on the interval [0, 2].

2
Area = f (2x2 —3x+ 2) dx Integrate between x = 0 and x = 2.
0
2x3 3x? :
= l: - + 2x] Find antiderivative.
3 2 0
16
= ? -6+4|—-(0-0+ 0) Apply Fundamental Theorem.
10 "
= Simplity
3 L]



Mean value rectangle:

b
b — 0 = f 1) dy
Figure 4.30
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The Mean Value Theorem for Integrals

In Section 4.2, you saw that the area of a region under a curve is greater than the area
of an inscribed rectangle and less than the area of a circumscribed rectangle. The
Mean Value Theorem for Integrals states that somewhere “between” the inscribed and
circumscribed rectangles there is a rectangle whose area is precisely equal to the area
of the region under the curve, as shown in Figure 4.30.

THEOREM 4.10 Mean Value Theorem for Integrals

If £ is continuous on the closed interval [a, b], then there exists a number c in
the closed interval [a, b] such that

f 109 dx = F(E)b — a).

Proof

Case 1: If f is constant on the interval [a, b}, the theorem is clearly valid because ¢
can be any point in [a, b].

Case 2: If f is not constant on [a, b], then, by the Extreme Value Theorem, you can
choose f(m) and f(M) to be the minimum and maximum values of f on la, b].
Because f(m) < f(x) < f(M) for all x in [a, b], you can apply Theorem 4.8 to write
the following.

b b b
f f(m) dx < J f(x) dx < J‘ f(M) dx See Figure 4.31.

b
o) — a) < f fdx < G -

1
b—a

Fom) < f £ dx < £()

From the third inequality, you can apply the Intermediate Value Theorem to conclude
that there exists some c in [a, b] such that

O =——| f@dx o fOAb-a) = | fx)dx
b—al], a

! f f SM)
o
a b a b P b

Inscribed rectangle Mean value rectangle Circumscribed rectangle
(less than actual area) (equal to actual area) (greater than actual area)
b b b
[ stis = s - 0 [ [[s0ndx = g6~
Figure 4.31 Em——————m

NOTE Notice that Theorem 4.10 does not specify how to determine c. It merely guarantees
the existence of at least one number c in the interval.
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Avcmgju value
s

-X

a b

b
Average value = lea f f(x) dx

Figure 4.32
v

0 (4, 40)

- Fx)=3x% - 2x

20

10 Average
value = 16
i .
3 4

Figure 4.33

Average Value of a Function

The value of f(c) given in the Mean Value Theorem for Integrals is called the average
value of f on the interval [a, b].

Definition of the Average Value of a Function on an Interval ‘

If f is integrable on the closed interval [a, b], then the average value of fon
the interval is

L[
b (Ja fx) dx.

NOTE Notice in Figure 4.32 that the area of the region under the graph of f is equal to the
area of the rectangle whose height is the average value.

To see why the average value of f is defined in this way, suppose that you
partition [a, b] into n subintervals of equal width Ax = (b — a)/n. If c, is any point in
the ith subinterval, the arithmetic average (or mean) of the function values at the ¢’s
is given by

a, = %[f(c]) +f(c2) + - +f(cn):|. Average of f(c,),. . .,flc,)

By multiplying and dividing by (b — a), you can write the average as

o= 1% B8 = 1 8 ea(25)

i=1

- 3 fle) Ax:

Finally, taking the limit as n— oo produces the average value of f on the interval
[a, b], as given in the definition above.

This development of the average value of a function on an interval is only one
of many practical uses of definite integrals to represent summation processes. In
Chapter 7, you will study other applications, such as volume, arc length, centers of
mass, and work.

EXAMPLE 4 Finding the Average Value of a Function
L]
Find the average value of f(x) = 3x> — 2x on the interval [1, 4].

Solution  The average value is given by

1 (* 1
b_—aJ:,f(x)dngﬁ (3x% — 2x) dx

1 4
[ 3 _ 2
3[x xl
1 48

=364 -16-(1-1D]="=16.

(See Figure 4.33.)



George Hall/Corbis

The first person to fly at a speed greater
than the speed of sound was Charles
Yeager. On October 14, 1947, Yeager was
clocked at 295.9 meters per second at an
altitude of 12.2 kilometers. If Yeager had
been flying at an altitude below 11.275
kilometers, this speed would not have
“broken the sound barrier” The photo
above shows an F-14 Tomcat, a supersonic,
twin-engine strike fighter. Currently,

the Tomcat can reach heights of 15.24
kilometers and speeds up to 2 mach
(707.78 meters per second).
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EXAMPLE 5 The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The
speed of sound s(x) (in meters per second) can be modeled by

—dx + 341, 0<x<IL5
295, 115 < x < 22
s(x) = {3x + 278.5, 22 < x < 32
3y + 254.5, 32 < x < 50
—3x + 404.5, 50 < x < 80

where x is the altitude in kilometers (see Figure 4.34). What is the average speed of
sound over the interval [0, 80]?

Solution Begin by integrating s(x) over the interval [0, 80]. To do this, you can
break the integral into five parts.
1.5

s 1.5
J s(x) dx = f (—4x + 341) dx = [—2x2 + 341x] = 3657
o 0 o

22 22 22
f s(x) dx = J (295) dx = |:295x] = 3097.5
1 1

1.5 1.5 1.5

32 32 32
f s(x) dx = f (3x + 278.5) dx [§x2 + 278.5in = 2987.5

22 22 22

50 50 50
f s(x) dx = f (3x + 254.5) dx [%xz + 254.5x] = 5688
3 3

2 2 32
80

80 80
f s(x) dx = f (—2x + 404.5) dx = [—%xz + 404.5x] = 9210
5 5

0 0 50
By adding the values of the five integrals, you have

80
f s(x) dx = 24,640.
0

So, the average speed of sound from an altitude of 0 kilometers to an altitude of
80 kilometers is

i [f* 4
Average speed = —~ s(x) dx = o 308 meters per second.
80 J, 80

300 -

290 -

Speed of sound (in m/sec)

280 -1

Altitude (in km)

Speed of sound depends on altitude.
Figure 4.34 re——
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EXPLORATION

Use a graphing utility to graph the
function

F(x) =f cos t dt
o

for 0 < x < . Do you recognize this
graph? Explain.

¥y y
I
., FO=0 ™ F(
\\ \\
| ‘\

LY
AY

= L va——

x=0 _.i

The Second Fundamental Theorem of Calculus

Earlier you saw that the definite integral of f on the interval [a, b] was defined using
the constant b as the upper limit of integration and x as the variable of integration.
However, a slightly different situation may arise in which the variable x is used as the
upper limit of integration. To avoid the confusion of using x in two different ways, ¢
is temporarily used as the variable of integration. (Remember that the definite integral
is not a function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x

1

‘ Constant | F'is a function of x.
4 '
h X
[ 7y ax Fo) = [ s
a % a w
4 .\l'.— .'.‘ % =
g—— fisa
| Constant ‘ function of x. | Constant function of ¢

EXAMPLE 6 The Definite Integral as a Function

Evaluate the function

F(x)=f cos t dt

0
atx = 0, 7/6, w/4, w/3, and 7/2.

Solution  You could evaluate five different definite integrals, one for each of the
given upper limits. However, it is much simpler to fix x (as a constant) temporarily
to obtain

X X
f cos tdt = sin t} = sinx — sin 0 = sin x.
0 0

Now, using F(x) = sin x, you can obtain the results shown in Figure 4.35.

y b y
A
_1 I 7!:_\/7 n:_\/g
= \F(Z)‘T F(5)=%
\
LY
A A
A\ \
LY \
-1 | = L ﬂ" - t
Xzz X:§

X
F(x) = f cos ¢ dt is the area under the curve f(f) = cos ¢ from 0 to x.
0

Figure 4.35

You can think of the function F(x) as accumulating the area under the curve
f{#) = costfromt = 0tor = x. For x = 0, the area is 0 and F(0) = 0. For x = /2,
F(m/2) = 1 gives the accumulated area under the cosine curve on the entire interval
[0, 7/2]. This interpretation of an integral as an accumulation function is used often
in applications of integration.



f®

“rt+ Ax

f(x) Ax = J [ dt

X

Figure 4.36

2 -1
X x+Ax
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In Example 6, note that the derivative of F' is the original integrand (with only the
variable changed). That is,

d de. _dl[" _
dx[F(x)] _dx[smx]_dx[L costdt] = cos x.

This result is generalized in the following theorem, called the Second Fundamental
Theorem of Calculus.

THEOREM 4.11 The Second Fundamental Theorem of Calculus

If f is continuous on an open interval I containing a, then, for every x in the
interval,

[ o] = o,

Proof Begin by defining F' as

F(x) = fxf(t) dt.

Then, by the definition of the derivative, you can write

i F(x + Ax) — F(x)

F/(x) - Aliao Ax
1 - (x+Ax X
. AliEOA_x L f@dt — L f0) dz]
1 - (x+Ax a
- m | f £ di + f 0 dt]
. 1 r (x+Ax
- Aliglo Ax LJX @) dt]'

From the Mean Value Theorem for Integrals (assuming Ax > 0), you know there
exists a number ¢ in the interval [x, x + Ax] such that the integral in the expression
above is equal to f(c) Ax. Moreover, because x < ¢ < x + Ax, it follows that c > x
as Ax— 0. So, you obtain

PO = Jim | 37 50 Ax]
= fim, /)

f&).

A similar argument can be made for Ax < 0. E—

NOTE Using the area model for definite integrals, you can view the approximation

x+Ax

flx) Ax =~ f Flo ar

X

as saying that the area of the rectangle of height f(x) and width Ax is approximately equal to
the area of the region lying between the graph of f and the x-axis on the interval [x, x + Ax],
as shown in Figure 4.36.



290

CHAPTER 4

Integration

Note that the Second Fundamental Theorem of Calculus tells you that if a func-
tion is continuous, you can be sure that it has an antiderivative. This antiderivative
need not, however, be an elementary function. (Recall the discussion of elementary
functions in Section P.3.)

EXAMPLE 7 Using the Second Fundamental Theorem of Calculus
d X
Evaluate o [f V41 dt].
0

Solution Note that f(rf) = </t> + 1 is continuous on the entire real line. So, using
the Second Fundamental Theorem of Calculus, you can write

d%U VESP RN
0

The differentiation shown in Example 7 is a straightforward application of the
Second Fundamental Theorem of Calculus. The next example shows how this theorem
can be combined with the Chain Rule to find the derivative of a function.

EXAMPLE 8 Using the Second Fundamental Theorem of Calculus

Find the derivative of F(x) = j cos t dt.
/2

Solution Using u = x?, you can apply the Second Fundamental Theorem of
Calculus with the Chain Rule as shown.

Flx) = CZI—Z % Chain Rule
= % F(x) % Definition of :JI
ARG du
= EU- ;cos tdt]a ubstitu
d[[" du ,
= E |:J,r/2 cos / dt:la Substitute u for x?
= (COS u) (3x2) Apply Second Fundamental Theorem of Calculus.
- (COS x3)(3x2) Rewrite as function of x. JE—

Because the integrand in Example 8 is easily integrated, you can verify the
derivative as follows.

Flx) = f cos t dt = sin t] = sinx3 — sin= = (sinx3) — 1
/2 /2 2
In this form, you can apply the Power Rule to verify that the derivative is the same as
that obtained in Example 8.

F'(x) = (cos x3)(3x2)
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Exerc | ses fo r S ect | oh 4 N 4 See www CalcChat.com for worked-out solutions to odd-numbered exercises
PF’ Graphical Reasoning In Exercises 1-4, use a graphing utility In Exercises 33—-38, determine the area of the given region.
to graph the integrand. Use the graph to determine whether the
i : " . 3B.y=x—x2 3. y=1-x*
definite integral is positive, negative, or zero.
y y
L =ty 2. | cosxd I
.0x2+1x .Ocosxx | 2[
2 2 4 |
3. j x/x%+ ldx 4. f x/2 — xdx i
-2 -2 ‘
- - X
< In Exercises 5-26, evaluate the definite integral of the algebraic | _m - x

function. Use a graphing utility to verify your result.

1 7 1
5. | 2xdx 6. j 3 dv 35 y=0-9V 3.y=2
0 2
0 5 Y
7. | (x—2)dx 8. j (=30 + 4) dv I
_11 ‘-] | |,
9. f (2 —2)dt 10. f (3x% + 5x — 4) dx ] \
=l
]
11. f (2t — 1)2dt 12. J (t* — 91) dt N I Y, . T
= | I 2
3
(5= 14. - =
. jl <x2 l)dx J‘—z (” " )du 37. y =cosx 38. y=x +sinx
fu—2 . o
15. - du 16. J vy
1
17. f (/1 — 2) ar 18. f f dx ‘
-1
Hopiizes :
19. J’ = AF 20. f @2 — 1) et
o 3 1k 1 T =X - X
0 | N r s
21 j (13 — 123) di 22. J’ il 4 B
] o
23. Jq |2x — 3| dx 24. [3 — |x = 3|) dx In Exercises 39-42, find the area of the region bounded by the
graphs of the equations.

3
25.-{]‘1’.‘3—4](4’.\‘ 26. j |2 — 4o + 3| dx 39, y=3x2+1, x=0, x=2, y=0
4 40.y=1+x x=0, x=8, y=0

In Exercises 27-32, evaluate the definite integral of the trigono- 4l y=x*+x x=2, y=0 42.y=-x>+3x y=0

metric function. Use a graphing utility to verify your result.
o In Exercises 43—46, find the value(s) of ¢ guaranteed by the
27. f (1 + sinx) dx Mean Value Theorem for Integrals for the function over the
0 given interval.

28 ™41 — sin? 8 9
"), cos?8 43, f(x) =x — 2% [0,2] M. f) =, [1,3]
— 2 i
29. J. sec?xdx 45. f(x) = 2sec?x, [—m/4, w/4]
—w/6 46. f(x) = cosx, [—m/3, m/3]
= 2
30. f (2 = csc?x) dx In Exercises 47-50, find the average value of the function over
the given interval and all values of x in the interval for which the
31, j 4 sec Otan 0 d6 function equals its average value.
—a/3
! 4x2+ 1)

32. f (2t + cos f) dt a7. fo) =4 -2 [-22] 48 f@)=——— [13]
e 49. f(x) =sinx, [0, 7] 50. f(x) = cosx, [0, /2]
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51. Velocity The graph shows the velocity, in feet per second, of
a car accelerating from rest. Use the graph to estimate the
distance the car travels in 8 seconds.

v v

=) =)

g 150 + g

5] -l Q

%120 3

= —

& T &

g 07T B

& I &

g 60 s

2 ol 2

g RIS 2

L Tttt L t

4 8 12 16 20
Time (in seconds) Time (in seconds)

Figure for 51 Figure for 52

52. Velocity The graph shows the velocity of a car as soon as the
driver applies the brakes. Use the graph to estimate how far the
car travels before it comes to a stop.

Writing About Concepts -

53. State the Fundamental Theorem of Calculus.
54. The graph of f is shown in the figure.
(a) Evaluate f/ f(x) dx.
(b) Determine the average value of f on the interval [1, 7].

(c) Determine the answers to parts (a) and (b) if the graph
is translated two units upward.

y ¥
' i
4 "
3
2
1 - X
X
Figure for 54 Figure for 55-60

In Exercises 55-60, use the graph of f shown in the figure.
The shaded region A has an area of 1.5, and [ f(x) dx = 3.5.
Use this information to fill in the blanks.

2 6
55. f fx)dx = 56. f fx)dx =

57.f0 [f(x)] dx = 58. J(; —2f(x)dx =

6
59. J;) 2+ fx)]dx =

60. The average value of f over the interval [0, 6] is

61. Force The force F (in newtons) of a hydraulic cylinder in a
press is proportional to the square of sec x, where x is the
distance (in meters) that the cylinder is extended in its cycle.
The domain of F is [0, 7/3], and F(0) = 500.

(a) Find F as a function of x.

(b) Find the average force exerted by the press over the interval
[0, m/3].
62. Blood Flow The velocity v of the flow of blood at a distance
r from the central axis of an artery of radius R is

v="KkR2—r?

where k is the constant of proportionality. Find the average rate
of flow of blood along a radius of the artery. (Use 0 and R as
the limits of integration.)

63. Respiratory Cycle The volume V in liters of air in the lungs
during a five-second respiratory cycle is approximated by the
model

V =0.1729r + 0.1522¢% — 0.03743

where ¢ is the time in seconds. Approximate the average volume
of air in the lungs during one cycle.

F“p‘ 64. Average Sales A company fits a model to the monthly sales
data of a seasonal product. The model is

S@)

ﬁ + 18405 sin(%’), 0<t<24

where S is sales (in thousands) and ¢ is time in months.

(a) Use a graphing utility to graph f(¢) = 0.5 sin(wt/6) for
0 <t < 24. Use the graph to explain why the average
value of £(z) is O over the interval.

(b) Use a graphing utility to graph S(f) and the line
g(t) = t/4 4+ 1.8 in the same viewing window. Use the

graph and the result of part (a) to explain why g is called
the trend line.

H’ 65. Modeling Data An experimental vehicle is tested on a
straight track. It starts from rest, and its velocity v (meters per
second) is recorded in the table every 10 seconds for 1 minute.

t 0 | 10|20 ] 30 | 40 | 50 | 60

v 0 5121|4062 |78 | 83

(a) Use a graphing utility to find a model of the form
= g’ + bt? + ct + d for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the Fundamental Theorem of Calculus to approximate
the distance traveled by the vehicle during the test.



/jF 66. Modeling Data A department store manager wants to

estimate the number of customers that enter the store from noon
until closing at 9 p.M. The table shows the number of customers
N entering the store during a randomly selected minute each
hour from ¢ — 1 to ¢, with # = 0 corresponding to noon.

t 1 2 3 4 5 6 7 8 9

N| 6 7 9 | 12| 15| 14| 11| 7 2

(a) Draw a histogram of the data.

(b) Estimate the total number of customers entering the store
between noon and 9 pM.

(c) Use the regression capabilities of a graphing utility to find
a model of the form N(f) = ar® + bt? + ct + d for the
data.

(d) Use a graphing utility to plot the data and graph the model.

(e) Use a graphing utility to evaluate [§ N(¢) dt, and use the
result to estimate the number of customers entering the
store between noon and 9 p.M. Compare this with your
answer in part (b).

(f) Estimate the average number of customers entering the
store per minute between 3 .M. and 7 P.M.

In Exercises 67-72, find F as a function of x and evaluate it at
x=2,x=5andx = 8.

67. Flx) = f s ar 68. F(x) = f et u-dar
0 2

X

gdv 70. F(x) =f

v 2

72. F(x) = f sin 6 d0
0

69. F(x) = jl '

71. F(x) = j cos 6d8
!

2
—?dt

73. Let g{x) = [; f(f) dt, where f is a function whose graph is
shown.

(a) Estimate g(0), g(2), g(4), g(6), and g(8).
(b) Find the largest open interval on which g is increasing. Find
the largest open interval on which g is decreasing.

(¢) Identify any extrema of g.
(d) Sketch a rough graph of g.

Figure for 73 Figure for 74

74. Let g(x) = [, f(¢t) dt, where f is a function whose graph is
shown.

(a) Estimate g(0), g(2), g(4), g(6), and g(8).
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(b) Find the largest open interval on which g is increasing. Find
the largest open interval on which g is decreasing.

(¢) Identify any extrema of g.
(d) Sketch a rough graph of g.

In Exercises 75— 80, (a) integrate to find F as a function of x and
(b) demonstrate the Second Fundamental Theorem of Calculus
by differentiating the result in part (a).

X

76. F(x) = j e+ 1) dt

75. F(x) = fx (t+2)dt

0
77. Fx) = | ¥rar
8

78. F(x) = | Jidt
4

79. F(x) = J sec?tdt

wid

80. F(x) = J sec £ tan ¢ dt
/3

In Exercises 81-86, use the Second Fundamental Theorem of
Calculus to find F(x).

81. F(x) = f Ce-2a 82 Q) = f T

5 =+ 1

83. F(x) = f AT T4 sd Fl) = j i

85. F(x) = f tcos{dt 86. F(x) = J sec3 tdt
0 0

In Exercises 87-92, find F'(x).

87. F(x) = fﬂ (4r + 1) dt 88. F(x) = Jx 3dt

x —x
sin x

89. Flx) = N 90. Fx) = J ' t%dt
0 2

91. F(x) = f sin #2 dt 92. Flx) = j sin 62 d6
0 0

93. Graphical Analysis Approximate the graph of g on the
interval 0 < x < 4, where g{x) = [y f(t) dz. Identify the

x-coordinate of an extremum of g. To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

94. Use the graph of the function f shown in the figure on the next
page and the function g defined by g(x) = [y f(1) 4.

(a) Complete the table.

x 1 & 3| 4 516 7 8 9 110

g(x)




294 CHAPTER 4  Integration

(b) Plot the points from the table in part (a) and graph g.
(c) Where does g have its minimum? Explain.
(d) Where does g have a maximum? Explain.

(e) On what interval does g increase at the greatest rate?
Explain.

(f) Identify the zeros of g.

95. Cost The total cost C (in dollars) of purchasing and main-
taining a piece of equipment for x years is

X

Clx) = 5000(25 & 3L

14 dt).
(a) Perform the integration to write C as a function of x.
(b) Find C(1), C(5)}, and C(10).

96. Area The area A between the graph of the function
g(t) = 4 — 4/¢? and the t-axis over the interval [, x] is

Alx) = ﬁ (4 - t4—2> dt.

(a) Find the horizontal asymptote of the graph of g.

(b) Integrate to find A as a function of x. Does the graph of A
have a horizontal asymptote? Explain.

Rectilinear Motion In Exercises 97-99, consider a particle
moving along the x-axis where x(¢) is the position of the particle
at time £, x ‘() is its velocity, and [? |x'(¢)|d¢ is the distance the
particle travels in the interval of time.

97. The position function is given by x(r) = * — 612 + 9 — 2,
0 <t < 5. Find the total distance the particle travels in 5 units
of time.

98. Repeat Exercise 97 for the position function given by
xH=0C—-D—32%0<r<5.

99. A particle moves along the x-axis with velocity v(t) = 1/,
t > 0. At time ¢ = 1, its position is x = 4. Find the total
distance traveled by the particle on the interval 1 < ¢ < 4.

100. Buffon’s Needle Experiment A horizontal plane is ruled
with parallel lines 2 inches apart. A two-inch needle is tossed
randomly onto the plane. The probability that the needle will
touch a line is

) /2
P:—j sin 0 d6
T Jo

where 6 is the acute angle between the needle and any one of
the parallel lines. Find this probability.

True or False? In Exercises 101 and 102, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

101. If F'(x) = G'(x) on the interval [a, b], then
F(b) — Fla) = G(b) — Gla).

102. If f is continuous on [a, b], then f is integrable on [a, &].

103. Find the Error Describe why the statement is incorrect.

f =) - 1= 2

d v(x)
104. Prove that —[ f@ dt} = fv)v(x) — flu(x))u'(x).

dx 1n(x)
105. Show that the function
£ = R B L N
o 1241 o 12+ 1

is constant for x > 0.
Y

106. Let G(x) = f [sj f(r)dt] ds, where f is continuous for all
o LJo

real ¢. Find (a) G(0), (b) G"(0), (c) G”(x), and (d) G™(0).

Section Project:

Use a graphing utility to graph the function y, = sin?¢ on the
interval 0 < ¢ < 7. Let F(x) be the following function of x.

F(x) = f sin® ¢ dt
(

)

(a) Complete the table. Explain why the values of F are increasing.

x O |m/6 | w/3 | w/2 |27/3| 57w/6| =
F(x)

Demonstrating the Fundamental Theorem

(b) Use the integration capabilities of a graphing utility to
graph F.

(c) Use the differentiation capabilities of a graphing utility to graph
F(x). How is this graph related to the graph in part (b)?

(d) Verify that the derivative of y = (1/2)t — (sin 2£)/4 is sin?t.
Graph y and write a short paragraph about how this graph is
related to those in parts (b) and (c).
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Integration by Substitution

» Use pattern recognition to find an indefinite integral.

¢ Use a change of variables to find an indefinite integral.

¢ Use the General Power Rule for Integration to find an indefinite integral.
¢ Use a change of variables to evaluate a definite integral.

¢ Evaluate a definite integral involving an even or odd function.

Pattern Recognition

In this section you will study techniques for integrating composite functions. The
discussion is split into two parts—pattern recognition and change of variables. Both
techniques involve a u-substitution. With pattern recognition you perform the
substitution mentally, and with change of variables you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule
in differentiation. Recall that for differentiable functions given by y = F(u) and
u = g(x), the Chain Rule states that

d !, 7,
S IFE)) = e .

From the definition of an antiderivative, it follows that
| Fetng o as = reo + €

= F(u) + C.

These results are summarized in the following theorem.

THEOREM 4.12 Antidifferentiation of a Composite Function

NOTE The statement of Theorem 4.12 Let g be a function whose range is an interval /, and let f be a function that is
doesn’t tell how to distinguish between continuous on [. If g is differentiable on its domain and F is an antiderivative
f(g(x)) and g’(x) in the integrand. As you of f on I, then

become more experienced at integration,

your skill in doing this will increase. Of , _

course, part of the key is familiarity with f Fle(e))g'(x) d = Flglx)) + C.

derivatives.

If u = g(x), then du = g'(x) dx and

ff(u) du = F(u) + C.

EXPLORATION

STUDY TIP There are several tech- Recognizing Patterns The integrand in each of the following integrals fits the
niques for applying substitution, each pattern f(g(x))g’(x). Identify the pattern and use the result to evaluate the integral.
differing slightly from the others.

However, you should remember that the a. f 2x(x2 + 1)*dx b. J3x2m dx c. f sec? x(tan x + 3) dx
goal is the same with every technique—

you are trying to find an antiderivative

9 — The next three integrals are similar to the first three. Show how you can multiply

and divide by a constant to evaluate these integrals.

d. fx(xz + 1Y dx e. ij\/x3 + 1dx f. f2 sec? x(tan x + 3) dx
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Examples 1 and 2 show how to apply Theorem 4.12 directly, by recognizing the
presence of f(g(x)) and g’(x). Note that the composite function in the integrand has an
outside function f and an inside function g. Moreover, the derivative g’(x) is present
as a factor of the integrand.

—

‘ Outside function [

|
j Mgx)g'(x) dx = Flg(x)) + C

Derivative of

Inside function ‘
 — inside function

EXAMPLE | Recognizing the f(g(x))g’(x) Pattern

Find J(x2 + 1)%(2x) dx.

Solution  Letting g(x) = x> + 1, you obtain
g'(x) = 2x
and

flgl) = f& + 1) = (& + 1)

TECHNOLOGY  Try using From this, you can recognize that the integrand follows the f(g(x))g'(x) pattern. Using
a computer algebra system, such the Power Rule for Integration and Theorem 4.12, you can write

as Maple, Derive, Mathematica,
Mathcad, or the TI-89, to solve the
integrals given in Examples 1 and 2.
Do you obtain the same antideriva-
tives that are listed in the examples?

flel) g’

> o

(2 + 12(2x) dx = %(xz +1P 4G

Try using the Chain Rule to check that the derivative of %(x2 + 1) + C is the
integrand of the original integral.

EXAMPLE 2 Recognizing the f(g(x))g’(x) Pattern

Find f 5 cos 5x dx.

Solution Letting g(x) = 5x, you obtain
g =5
and

flg(x)) = f(5x) = cos 5x.

From this, you can recognize that the integrand follows the f(g(x))g’(x) pattern. Using
the Cosine Rule for Integration and Theorem 4.12, you can write

Fglx) g’(x)
J(cos 5x)(5) dx = sin 5x + C.

You can check this by differentiating sin 5x + C to obtain the original integrand.
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The integrands in Examples 1 and 2 fit the f(g(x))g(x) pattern exactly—you only
had to recognize the pattern. You can extend this technique considerably with the
Constant Multiple Rule

f kf(x) dx = kﬁ"(x') dx.

Many integrands contain the essential part (the variable part) of g’(x) but are missing
a constant multiple. In such cases, you can multiply and divide by the necessary
constant multiple, as shown in Example 3.

EXAMPLE 3 Multiplying and Dividing by a Constant
Find fx(x2 + 1)? dx.

Solution This is similar to the integral given in Example 1, except that the integrand
is missing a factor of 2. Recognizing that 2x is the derivative of x? + 1, you can let
g(x) = x2 + 1 and supply the 2x as follows.

|
fx(xz + 1)2dx = J (x2+ 1) (;) 2y) dx Multiply and divide by 2.
flofe)) ® "I"
1 1- L 2 : .
= ; (.\'* #* I]" (2,.'.') dx Constant Multiple Rule
| I '.E. 4 37
= 2—' {“\—3—”1 .6 Integrate.,
|
==+ 1Y+ C Simplify.
6 D

In practice, most people would not write as many steps as are shown in Example
3. For instance, you could evaluate the integral by simply writing

fx(x2 + 1)2dx = %J(xz + 1)22x dx

e

=é(x2+ 1 + C.

NOTE Be sure you see that the Constant Multiple Rule applies only to constants. You cannot
multiply and divide by a variable and then move the variable outside the integral sign. For
instance,

f(xz + 12 dx # Zl—xj(xz +1)2(2x) dv.

After all, if it were legitimate to move variable quantities outside the integral sign, you could
move the entire integrand out and simplify the whole process. But the result would be incorrect.
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STUDY TIP Because integration is
usually more difficult than differentiation,
you should always check your answer to
an integration problem by differentiating.
For instance, in Example 4 you should
differentiate §(2x — 1)*2 + C to verify
that you obtain the original integrand.

e

[ wwwi

s

Change of Variables

With a formal change of variables, you completely rewrite the integral in terms of u
and du (or any other convenient variable). Although this procedure can involve more
written steps than the pattern recognition illustrated in Examples 1 to 3, it is useful for
complicated integrands. The change of variable technique uses the Leibniz notation
for the differential. That is, if u = g(x), then du = g'(x) dx, and the integral in
Theorem 4.12 takes the form

ff(g(x))g’(x) dx = jﬂ_m du= F@) + C.

EXAMPLE 4 Change of Variables

Find f\/Zx — 1 dx.

Solution First, let u be the inner function, # = 2x — 1. Then calculate the differential
du to be du = 2 dx. Now, using /2x — 1 = Juand dx = du/2, substitute to obtain

J.\/ 2x — ldx = f./; (”%) Integral in terms of u
|

=5 j w2 du Constant Multiple Rule
-
| T 3/2
= 5 3 / B + C Antiderivative in terms of #
E s o
= gh‘ + C Simplify.
1 3/2 .
= g (2x . 1) + C. Aautiderivative in terms of x

P EXAMPLE 5 Change of Variables

Find fx\/ 2x — 1dx.

Solution As in the previous example, let u = 2x — 1 and obtain dx = du/2.
Because the integrand contains a factor of x, you must also solve for x in terms of u,
as shown.

u=2x-—1 x=w+1)/2 Solve for x in terms of u.

Now, using substitution, you obtain

frmsa- i3 onf

2 2

= %f(uyz + ul/?) du

1 u5/2 u3/2>
= —|—-— 4+ —
4(5/2 3/2 +c

— = D@ - ) C



STUDY TIP When making a change
of variables, be sure that your answer is
written using the same variables as in
the original integrand. For instance, in
Example 6, you should not leave your
answer as

élﬂ-l—C

but rather, replace u by sin 3x.
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To complete the change of variables in Example 5, you solved for x in terms of
u. Sometimes this is very difficult. Fortunately it is not always necessary, as shown in
the next example.

EXAMPLE 6 Change of Variables

Find j sin? 3x cos 3x dx.

Solution Because sin® 3x = (sin 3x)?, you can let u = sin 3x. Then
du = (cos 3x)(3) dx.

Now, because cos 3x dx is part of the original integral, you can write
du
3" cos 3x dx.

Substituting « and du/3 in the original integral yields

fsin2 3xcos 3x dx = juz d3_u

I%fuzdu
1/u?

=—[=] +
3<3> ¢

—lsin33x+C
5 A

You can check this by differentiating.

AT e = (D)3 (sin 3002

o [9 sin 3x} = <9>(3)(s1n 3x)%(cos 3x)(3)
= gin? 3x cos 3x

Because differentiation produces the original integrand, you know that you have

obtained the correct antiderivative. ——

The steps used for integration by substitution are summarized in the following
guidelines.

Guidelines for Making a Change of Variables

1. Choose a substitution # = g(x). Usually, it is best to choose the inner part of
a composite function, such as a quantity raised to a power.

Compute du = g'(x) dx.

. Rewrite the integral in terms of the variable u.

. Find the resulting integral in terms of u.

Replace u by g(x) to obtain an antiderivative in terms of x.

S U B W R

. Check your answer by differentiating.
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EXPLORATION

Suppose you were asked to find one
of the following integrals. Which one
would you choose? Explain your
reasoning.

a. f\/x3.+ ldx or
fx"\/f + ldx
b. J. tan(3x) sec2(3x) dx or

f tan(3x) dx

The General Power Rule for Integration

One of the most common u-substitutions involves quantities in the integrand that are
raised to a power. Because of the importance of this type of substitution, it is given a
special name—the General Power Rule for Integration. A proof of this rule follows
directly from the (simple) Power Rule for Integration, together with Theorem 4.12,

THEOREM 4.13 The General Power Rule for Integration

If g is a differentiable function of x, then

[tewrg o= B 4oy

Equivalently, if u = g(x), then

un+1
udu—n+1+C, n+ —1.

EXAMPLE 7 Substitution and the General Power Rule

ut du w/5
— A
4 (3x _ 1)5
a. |30Bx — 1)*dx= |(3x — 1)4(3)dx=f+ c
u! du u’/2
¢ - , 3
b: f(2x+ D2 + x) dx = f(x2+x)1(2x+ 1)dx=@+ c
u du
(x3 —2)3/2 2
e |3x2/B—2dx=|(3—2)/2(3x?) dx = e
(-1
e S P (T ¥
d. f(l — & = f(l 20 H (40 dy = o+ =
u? du w/3
s e — A, A 3
e fCOS%CSinx‘ix = —J-(Cos %)?(—sinx) dx = _Lo;x) +C

+C=3&-2r+C

Some integrals whose integrands involve quantities raised to powers cannot be

found by the General Power Rule. Consider the two integrals

jx(x2 + 1)2dx and f(xz + 1)24x.

The substitution # = x2 + 1 works in the first integral but not in the second. In the
second, the substitution fails because the integrand lacks the factor x needed for du.
Fortunately, for this particular integral, you can expand the integrand as
(x2 + 1)2 = x* + 2x2 + 1 and use the (simple) Power Rule to integrate each term.
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Change of Variables for Definite Integrals

When using u-substitution with a definite integral, it is often convenient to determine
the limits of integration for the variable u rather than to convert the antiderivative back
to the variable x and evaluate at the original limits. This change of variables is stated
explicitly in the next theorem. The proof follows from Theorem 4.12 combined with
the Fundamental Theorem of Calculus.

THEOREM 4.14 Change of Variables for Definite Integrals

If the function # = g(x) has a continuous derivative on the closed interval [a, b]
and f is continuous on the range of g, then

8(b)

J flgbg @) dx = | f(u) du.

gla)

EXAMPLE 8 Change of Variables

|
Evaluate f x(x2 + 1)3dx.
0

Solution To evaluate this integral, let u = x2 + 1. Then, you obtain
u=x>+1 = du=2xdx

Before substituting, determine the new upper and lower limits of integration.
Lower Limit Upper Limit

Whenx =0, u=0>2+1=1. Whenx=1, u=12+1=2,

Now, you can substitute to obtain

1 (RS =
f x(x2 + 1) dx = é—f (x2 + 1)*(2x) dx Integration limits for x
0 i -

52 - = -
=35 J u? du Integration limits for

I T~
1[u]?
=314
1 1
= 2<4 - 4)
Nt
8

Try rewriting the antiderivative %(u“/ 4) in terms of the variable x and evaluate the
definite integral at the original limits of integration, as shown.

l[“_“]zzl[w]l
214, 2L 4
1 1\ 15
‘E<4—4> T8

Notice that you obtain the same result. —_—
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Exercises for Section 4.5

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, complete the table by identifying u and du for

the integral.

ﬁf (g(x))g (x) dx

1. j(ﬁA‘3 + 1)*{(10x) dy
2. f_\'zyu'.i + 1 dx

x
-

4, J‘ sec 2y tan 2y dy

5. fl:m2 xsec’x dy

In Exercises 7-34, find the indefinite integral and check the
result by differentiation.

7. f (1 + 22)42) dx

9. J V9 — %2 (—2x) dx
11. f x3(x* + 3)2 dx

13. j X — 1)*dx

15. f tVE2 + 2dt

17. f 5x Y1 — 52 dx

x
. f(l 8]

23, /] == dx

e Jlee )

27, |—ud
fmx
x2+3x+7

Jx
31. fﬂ( 2) dt

3, f © — )y dy

29.

u = glx)

8.
10. j Y[ = 2x2)(—4x) dx
12
14.
16.
18.
20.
22.
24.
26.

28.

30.

32.

»

34.

f(x2 — 9)3(2x) dx

fxz(x3 + 5)% dx
fx(4x2 + 3)3 dx
f BV + 5 dt
fu2\/m du

x3
f T +xp®
,l."?
f 16— ¢ =
x*
S ———————=1 i'
JJI + ! e

’_
3 4t2

J'27ry8 8 — ¥ dy

du = g'(x) dx

In Exercises 35-38, solve the differential equation.

d 4y
35. =4y + ——
dx JI16 — 52
36, e JOE
de 1+ 23
dy ___x+1
L dr (X2 + 2x — 3)?
dy x — 4
38, DL~
dx  Jx'—8x+ 1

H‘" Slope Fields In Exercises 39-42, a differential equation, a

point, and a slope field are given. A slope field consists of line
segments with slopes given by the differential equation. These line
segments give a visual perspective of the directions of the
solutions of the differential equation. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, go to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.
Compare the result with the sketches in part (a).

dy = dy
39. Z =347 40. — = x*(x* — 1)
= it )
2,2) (1,0)
il Y
] ]
NN 3T|/ /A I -2 = = | |
NN NG Wd - - o
—\\\-l-//,& I L et
NN N /s 1 I -
NN A H—————t—————x
ARSI VA B =2y — i |2
S/ RS W i F—p—pat - x [ Y e |
“2 0\ A N s/ 7 2 1 — ——
-\ N+ 7/ = | ;—2|/—|I
d d
41. 2 — xcos x2 42 2= sec(2x) tan(2x)
dx dx
o, 1 ©,-1)
Yy y
i
J N SN N N 1 \|\’|3‘!"| i~ 1 —
N N e 4 ~d \ =i lepX b~ k-~
R W R S YRR B
NSNS NN N ~I\—1l/+Vvi-y]-
¢ NSNS o | i RNl ==l VY I (P
~Hi\N—=t/+\Vvi=t] -
B o s e e =t
N ERS"~ == SN =3 X b W~/ {3
~ &y \Vi~7 [~
LA NNV ~|I\AN—=tit+¥V~7 |-
= NN S VY \l /I.J._“II\/l/
~I N7 Yy~ -
i it NN A ~IXN—B34+\V -/~




In Exercises 43-56, find the indefinite integral.

43. J‘?T sin 7y dy 44, j 4x3 sin x* dx

45, jsm 2x dx 46. fcos 6x dx
47, J;, cos — n’ f 48. f x sin x2 dx
49. J:.m 2x ¢os 2x ey
50. fscc I — x)tan(l — x) dx
51, J'hm x sec? xdx 52. f\/tam sec? x dx
53. JC“’ 54. j ST i
cot?x cos® x

55. Jcm: Xy 56. f csc? (%) dx

In Exercises 57—62, find an equation for the function f that has
the given derivative and whose graph passes through the given
point.

Derivative B Point
57. fix) = cos% (0,3)
58. f(x) = msec mwxtan 7x (3.1)

59. f(x) = sin 4x

60. f(x) = sec*(2x) ‘2>
61. f(x) = 2x(4x* — 10)? (2,10)
62. fi(x) = —2x/8 — x* 2,7

In Exercises 63-70, find the indefinite integral by the method
shown in Example 5.

63. J’_‘(\/A' + 2.dx 64. fx\/Zx + 1dx

65. j.\-ﬁ J1 — xdx 66. j(x + V2 — xdx

T2 2+ 1
67. | —F—d 68. |——d.
J\/ll'-lwr \/x+4x

—x
69. dx 70. |tYt—4dt
f(x+1)—\/x+l f

In Exercises 71-82, evaluate the definite integral. Use a graphing
utility to verify your result.

1 4
71. f x(x% + 1)3 dx 72. f x2(x® + 8)2 dx
1 -2

2 1
73. f 2x2/x* + ldx 74. j x/1 — x2dx
1 o
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¢ | ) X
78. ——dx 76. ————1d
L VA1 L ST+ ™

9 2
— -lidnx 78. f x ¥4 + x2dx

0

S — 1

R

82.

J

79, flz(x—l)\/Z——xdx 80. f*;u
J
J

Differential Equations In Exercises 83-86, the graph of a
function f is shown. Use the differential equation and the given
point to find an equation of the function.

dy 2(m o3 B dy —48
L2 = + e A . S
83 18x2(2x 1) 84 Gx + 5

—
L

dy _ )
86. = 4x + B + 167

In Exercises 87-92, find the area of the region. Use a graphing
utility to verify your result.

7 6
87. J. tVx+ lde 88. J x2Ix + 2dx
(4] =2

¥ y
A i
80

16 -
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89. y = 2sinx + sin 2x 90. y = sinx + cos 2x

y Y

I 4

i
2

/4
92. f csc 2x cot 2x dx

w/12

v ¥
')
4 4-
3 3
2 24
l 1
L | ———x - —i e X
] T 3 xm T E 3o

4 2 4 16 8 16 4

'dF’ In Exercises 93-98, use a graphing utility to evaluate the
integral. Graph the region whose area is given by the definite

integral.
f P+ 2dy
(1)

o
i \X?—T +
95, j xvx = 3y 96. J £2x— ldx
3 1
98. f sin 2 dy
4]

a
97. J’ (U-} cos —) dae
0 6

Writing In Exercises 99 and 100, find the indefinite integral in
two ways. Explain any difference in the forms of the answers.

99. J(Zx = 1)%dx

100. fsin X cos x dx

In Exercises 101-104, evaluate the integral using the properties
of even and odd functions as an aid.

2 2
101. j X2+ 1) dx 102. J x(x? + 1P dx
hory -2

/2 /2
103. f sin® x cos x dx 104, J sin x cos x dx

—/2 —7/2

105. Use f2x2dx =% to evaluate each definite integral without
using the Fundamental Theorem of Calculus.

0 2
(a)f x2dx (b)f x2 dx
—2 =2

0

2
(C)J —x%dx (d)f 3x2 dx
o -2

106. Use the symmetry of the graphs of the sine and cosine
functions as an aid in evaluating each definite integral.

w4 /4
(a) f sin o dy (b) cos x dx
i — /4
w2 /2
(c) f cos v dy (d) sin x cos x dx
~mf2 -n/2

In Exercises 107 and 108, write the integral as the sum of the
integral of an odd function and the integral of an even function.
Use this simplification to evaluate the integral.

w

4
107. f (B3 +6x2—2x—3)dx  108. f (sin 3x + cos 3x) dx
—4

-7

Writing About Concepts

109. Describe why

fx(S — x23dx # fu3 du

where u = 5 — x2.
110. Without integrating, explain why

2
f x(x? + 1)2dx = 0.

-2

111. Cash Flow The rate of disbursement dQ/dt of a 2 million
dollar federal grant is proportional to the square of 100 — r.
Time ¢ is measured in days (0 < ¢ < 100), and Q is the
amount that remains to be disbursed. Find the amount that
remains to be disbursed after 50 days. Assume that all the
money will be disbursed in 100 days.

112. Depreciation The rate of depreciation dV/dt of a machine is
inversely proportional to the square of ¢ + 1, where V is the
value of the machine ¢ years after it was purchased. The initial
value of the machine was $500,000, and its value decreased
$100,000 in the first year. Estimate its value after
4 years.

113. Rainfall The normal monthly rainfall at the Seattle-Tacoma
airport can be approximated by the model
R = 3.121 + 2.399 5in(0.524¢ + 1.377)

where R is measured in inches and ¢ is the time in months,
with ¢ = 1 corresponding to January. (Source: U.S. National
Oceanic and Atmospheric Administration)

(a) Determine the extrema of the function over a one-year
period.

(b) Use integration to approximate the normal annual rainfall.
(Hint: Integrate over the interval [0, 12].)

(c) Approximate the average monthly rainfall during the
months of October, November, and December.



114. Sales The sales S (in thousands of units) of a seasonal
product are given by the model

S = 7450 + 43.75 sin%t

where t is the time in months, with # = 1 corresponding to
January. Find the average sales for each time period.

(a) The first quarter (0 < 7 < 3)
(b) The second quarter (3 < t < 6)
(¢) The entire year (0 < t < 12)

115. Water Supply A model for the flow rate of water at a pump-
ing station on a given day is

RG) =53 +7 sin(%t B 3.6> +9 cos<—17T—2t + 8.9>

where 0 < t < 24. R is the flow rate in thousands of gallons
per hour, and ¢ is the time in hours.

,C}g‘ (a) Use a graphing utility to graph the rate function and
approximate the maximum flow rate at the pumping
station.

{(b) Approximate the total volume of water pumped in 1 day.
116. Electricity The oscillating current in an electrical circuit is

I = 2 5in(607t) + cos(120¢)

where I is measured in amperes and f is measured in seconds.

Find the average current for each time interval.

@ 0<t1<g

() 0<1< 35

)0t

IN

L
30

IA

Probability In Exercises 117 and 118, the function
fE)=kx"1 —x)", 0<x<1

where n > 0, m > 0, and k is a constant, can be used to repre-
sent various probability distributions. If k is chosen such that

flf(x)dx= 1

the probability that x will fall betweenaand b (0 <a <b < 1)
is

P,,= f f(x) dx.

117. The probability that a person will remember between a% and
b % of material learned in an experiment is

b
15
Po»= Zx\/l — xdx

where x represents the percent remembered. (See figure.)

(a) For a randomly chosen individual, what is the probability
that he or she will recall between 50% and 75% of the
material?
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(b) What is the median percent recall? That is, for what value
of b is it true that the probability of recalling 0 to b is 0.5?

— | Il { — f—-x
a bos 1.0 1.5

Figure for 117

118. The probability that ore samples taken from a region contain
between a% and b % iron is

b
o= [ 12200 -

a

where x represents the percent of iron. (See figure.) What is
the probability that a sample will contain between

(a) 0% and 25% iron?
(b) 50% and 100% iron?

: -

o bl 2

119. Temperature The temperature in degrees Fahrenheit in a
house is

| — 8)]
- av o
T=172+12 sm[ 2

where ¢ is time in hours, with ¢ = O representing midnight.
The hourly cost of cooling a house is $0.10 per degree.

(a) Find the cost C of cooling the house if its thermostat is set
at 72°F by evaluating the integral

20 (t —8)
C=01 |:72 + 12 sin 1 72:| dt. (See figure.)
8

T

84
78
R A
66
60

‘Thermostat setting: 72%
—t—= e S e HL K Tt /
L] i I 1 T L lJ 1 T L] ]

2 4 6 8 10 12 14 16 18 20 22 24
Time (in hours)

Temperature (in °F)
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(b) Find the savings from resetting the thermostat to 78°F by
evaluating the integral

18 _
C= 0.1f [72 +125n T8 -78] dr.
10

(See figure.)

T

Temperature (in °F)

1
Thermostat setting: 78°
1 II II ] ] I r
T L

1 1 1 1

I T l T L I T
2 4 6 8 10 12 14 16 18 20 22 24
Time (in hours)

120. Manufacturing A manufacturer of fertilizer finds that
national sales of fertilizer follow the seasonal pattern

27 (t — 60):'

F 100,000[1 sin 365

where F is measured in pounds and ¢ represents the time in
days, with ¢ = 1 corresponding to January 1. The manufacturer
wants to set up a schedule to produce a uniform amount of
fertilizer each day. What should this amount be?

H’ 121. Graphical Analysis Consider the functions f and g, where
t

flx) = 6sinxcos?x and g(r) = ff(x) dx.
0

(a) Use a graphing utility to graph f and g in the same
viewing window.

(b) Explain why g is nonnegative.

(¢) Identify the points on the graph of g that correspond to the
extrema of f.

(d) Does each of the zeros of f correspond to an extremum of
g7 Explain.

(e) Consider the function
I
h(t) = j f(x) ax.
w/2

Use a graphing utility to graph h. What is the relationship

between g and 4? Verify your conjecture.
.
122, Find lim 3 SG7/7)

n—+tco =1 n

definite integral over the interval [0, 1].

by evaluating an appropriate

123, (a) Show that [y x2(1 — x)Sdx = [} x3(1 — x)? dx.
(b) Show that [y x/(1 — x)? dx = [} x*(1 — x)* dx.
124. (a) Show that fg’/z sin®x dx = fg’” cos? x dx.

2 . 2 .
(b) Show that f(;r 4 sin” x dx = fO"/ cos” x dx, where n is a
positive integer.

True or False? In Exercises 125-130, determine whether the
statement is true or false, If it is false, explain why or give an
example that shows it is false.

125. f(Zx + 1)2dx =+2x + 1)’ + C

126. fx(xz + D) dx = 32(3% + x) + C

10

10
127. f (ax® + bx2 + cx + d) dx = 2f (Bx? + d) dx

“1o 0

n bk 2o
128. f sin x ey = f sin ¥ efy
] o

129, 4J sinxcosxdy = —cos 2x + C
130. Jsinz?.x cos 2xdx = tsin? v + C

131. Assume that f is continuous everywhere and that ¢ is a
constant. Show that

cb b
f fx) dx = Cf Flex) dx.

132. (a) Verify that sinu — ucosu + C = [u sin u du.
(b) Use part (a) to show that f07'2 sinv/xdx = 2.
133. Complete the proof of Theorem 4.15.

134. Show that if f is continuous on the entire real number line,
then

fth

f(x) dx.

a+

Putnam Exam Challenge

b
f flc+ hydx =

135. Ifay, a,, . . ., a, are real numbers satisfying
dy a a,
-4+ =4+ —_ =0
1 2 n+ 1

show that the equation ay + a;x + a,x? + - -
has at least one real zero.

“Hax=0

136. Find all the continuous positive functions f(x), for0 < x < 1,
such that

Lf(x) dx =1
fo floxdx = a

i
f SO dx = o
0

where « is a real number.

These problems were composed by the Committee on the Putnam Prize Competition
© The Mathematical Association of America, All rights reserved.
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The area of the region can be approximated

using four trapezoids.
Figure 4.41

bh—a
n

The area of the first trapezoid is

Lot S (b=)

Figure 4.42
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Numerical Integration

« Approximate a definite integral using the Trapezoidal Rule.
e Approximate a definite integral using Simpson’s Rule.

o Analyze the approximate errors in the Trapezoidal Rule and Simpson’s Rule.

The Trapezoidal Rule

Some elementary functions simply do not have antiderivatives that are elementary
functions. For example, there is no elementary function that has any of the following
functions as its derivative.

¥xV1 —x,

Jx cos x,

CoS X

) J1 =53,

sin x?

If you need to evaluate a definite integral involving a function whose antiderivative
cannot be found, the Fundamental Theorem of Calculus cannot be applied, and you
must resort to an approximation technique. Two such techniques are described in this

section.

One way to approximate a definite integral is to use n trapezoids, as shown in
Figure 4.41. In the development of this method, assume that f is continuous and
positive on the interval [a, b]. So, the definite integral

[[sora

represents the area of the region bounded by the graph of f and the x-axis, fromx = a
to x = b. First, partition the interval [a, b] into n subintervals, each of width
Ax = (b — a)/n, such that

a=Xy<x <X

<---<x,=b

Then form a trapezoid for each subinterval (see Figure 4.42). The area of the ith

trapezoid is

Area of ith trapezoid = [

2

[l y) + f() ](b —~ a>'

n

This implies that the sum of the areas of the n trapezoids is

flxg) + f0x) + ..

= ()]

= (b , a>[f(xO) +f(x1) +f(x1) +f(xz) + +f(xn,1) +f(x”)]

2n

2n

= (22 + 24000 + 2500 + -+ 245, S

2

-+ f(xn—l)2+ f(xn).

Letting Ax = (b — a)/n, you can take the limit as n — oo to obtain

n—oo

lim (%—“) [FGxg) + 26Cr) + + -+ 2, ) + Fx,)]

f(xi) Ax

m

n—o0 .

=

M:

—

= lim [———[f (@) = 2f (b)) Ax + ilf (x:) Ax]
_ Lfa) = (BB —a) .
n—»o0 2n
b
=0+ j Fx) dx.

The result is summarized in the following theorem.
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THEOREM 4.16 The Trapezoidal Rule

Let f be continuous on [a, b]. The Trapezoidal Rule for approximating
J f(x) dx is given by

[ 709 e =22 ) 4 2760) 2000 + -+ 27000 + 150) ‘

Moreover, as n— oo, the right-hand side approaches [ f F(x) dx. ‘

NOTE  Observe that the coefficients in the Trapezoidal Rule have the following pattern.

222 ...2 21

EXAMPLE |  Approximation with the Trapezoidal Rule
ae——————

y Use the Trapezoidal Rule to approximate

a5 o f sin x dx.
0

Compare the results for n = 4 and n = 8, as shown in Figure 4.43.

. - Solution When n = 4, Ax = /4, and you obtain
T I - ;
sinx dx =~ 7—T<sin0 + 2sin 2 + 2 sin = + 2 sin =~ + sin 77)
A 8 4 2 4

Four subintervals

=7§T(0+\/§+2+\/§+0):ﬂ1:—\/§)~1.896.

y=sinx Whenn = 8§, Ax = 7T/8, and you obtain

L sin x d %%(sino + 2sin7§7+ 2sinjf+ 2sin3?ﬂ-+ 2sing

g - +25in5?77-+2$in37w+2$in%7+sin7r)

Sz 3t Ir =

T % 3z
8 4 8 2 8 4 8 3
| =1<2+2ﬂ+4sin7—7+4sin—">z 1.974.
Eight subintervals 16 8 8
Trapezoidal approximations For this particular integral, you could have found an antiderivative and determined that
Figure 4.43 the exact area of the region is 2. o ——

TECHNOLOGY Most graphing utilities and computer algebra systems have
built-in programs that can be used to approximate the value of a definite integral.
Try using such a program to approximate the integral in Example 1. How close is
your approximation?

When you use such a program, you need to be aware of its limitations. Often,
you are given no indication of the degree of accuracy of the approximation. Other
times, you may be given an approximation that is completely wrong, For instance,
try using a built-in numerical integration program to evaluate

2
f ldx.
= X

Your calculator should give an error message. Does yours?
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It is interesting to compare the Trapezoidal Rule with the Midpoint Rule given in
Section 4.2 (Exercises 63—66). For the Trapezoidal Rule, you average the function
values at the endpoints of the subintervals, but for the Midpoint Rule you take the
function values of the subinterval midpoints.

b n . X
J f (x) dx = 2 Jf (rﬁ%l) Ax Midpoint Rule
a i=1 =
b = (x) + N
; f (X) dx = ’:E] (&) zfi()cl Il) Ax Trapezoidal Rule

NOTE There are two important points that should be made concerning the Trapezoidal Rule
(or the Midpoint Rule). First, the approximation tends to become more accurate as # increases.
For instance, in Example 1, if n = 16, the Trapezoidal Rule yields an approximation of 1.994.
Second, although you could have used the Fundamental Theorem to evaluate the integral in
Example 1, this theorem cannot be used to evaluate an integral as simple as ['sin x? dx because
sin x2 has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to this
integral.

Simpson’s Rule

One way to view the trapezoidal approximation of a definite integral is to say that on
each subinterval you approximate f by a first-degree polynomial. In Simpson’s Rule,
named after the English mathematician Thomas Simpson (1710-1761), you take this
procedure one step further and approximate f by second-degree polynomials.

Before presenting Simpson’s Rule, we list a theorem for evaluating integrals of
polynomials of degree 2 (or less).

THEOREM 4.17 Integral of p(x) = Ax> + Bx + C ‘
If p(x) = Ax®> + Bx + C, then

[ "ot s = (252 pted + 4o(52) + ot0)] |

Proof
b b
j p(x) dx = f (Ax2 + Bx + C) dx

Ax®  Bx? )
==+ =+
[ 3 " 2 Cx]a
_AW =) | BB =)
3 2

= (b g “)[2A(a2 + ab + b?) + 3B(b + a) + 6C)

+ C(b — a)

By expansion and collection of terms, the expression inside the brackets becomes

p () N <a er b) p )

and you can write

[ pras= (25 e + o 57) + 00} .

a

+ 2
(Aa2+Ba+C)+4[A(b2a> +B(b;a>+c}+(Ab2+Bb+C)
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To develop Simpson’s Rule for approximating a definite integral, you again
partition the interval [a, b] into n subintervals, each of width Ax = (b — a)/n. This
time, however, n is required to be even, and the subintervals are grouped in pairs such
that

i a=lx0<x]<,yl2<x3<x4l<---<xn_2<xn;1<x=b.

n

[xo’ X,] [Xz’. %] L%, 2]

On each (double) subinterval [x;_,, x;], you can approximate f by a polynomial p of
degree less than or equal to 2. (See Exercise 55.) For example, on the subinterval
[x, x,], choose the polynomial of least degree passing through the points

——x (%0, ¥o)s (x1 1), and (x,, y,), as shown in Figure 4.44. Now, using p as an approxima-
" tion of f on this subinterval, you have, by Theorem 4.17,
" " Xy — Xp Xg + x,
% B x)dx = x)dx = [x+4<——>+ x]
[ [" 10 s = |y an = 228 ) + (B3 5) 4 i
N g 2[(b — a)/n
Figure 4.44 = [—6 J1d [p(xg) + 4p (x)) + p(x,)]
b—a
= 5 L) + 47@) + )]
Repeating this procedure on the entire interval [a, b] produces the following theorem.
—_— — —
THEOREM 4.18 Simpson’s Rule (n is even)
Let f be continuous on [g, b]. Simpson’s Rule for approximating [ f(x) dx is
b
b—a
f FO) dr = == flg) + 4£ () + 20) + 4f(x) + - -
+ 4f(xn—l) + f(xn)]
Moreover, as n — oo, the right-hand side approaches [ f(x) dx.
NOTE  Observe that the coefficients in Simpson’s Rule have the following pattern.
142424...4241
In Example 1, the Trapezoidal Rule was used to estimate Jo sin x dx. In the next
example, Simpson’s Rule is applied to the same integral.
@H D EXAMPLE 2 Approximation with Simpson’s Rule
- b |
NOTE In Example 1, the Trapezoidal Use Simpson’s Rule to approximate
Rule with n = 8 approximated [ sin x dx .
as 1.974. In Example 2, Simpson's Rule f sin x dx.
with n = 8 gave an approximation of 0

2.0003. The antiderivative would produce

the true value of 2. Compare the results for » = 4 and n = 8.

Solution When n = 4, you have

f sin x dx = %(sin0+4sing+25in7—T+4sin3—ﬂ-+ sinﬂ-)%Z.OOS.
0

2 4

w

When n = 8, you have f sin x dx = 2.0003,

0 L |



TECHNOLOGY If you have
access to a computer algebra system,
use it to evaluate the definite integral
in Example 3. You should obtain a
value of

jl\/l + x*dx = %[ﬂ-&-ln(l +\f2)]

=~ [.14779.

(“In” represents the natural logarithmic
function, which you will study in
Section 5.1.)

|
1.144 < J J1+ 2dx < 1.164
0

Figure 4.45
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Error Analysis

If you must use an approximation technique, it is important to know how accurate you
can expect the approximation to be. The following theorem, which is listed without
proof, gives the formulas for estimating the errors involved in the use of Simpson’s
Rule and the Trapezoidal Rule.

‘ THEOREM 4.19 Errors in the Trapezoidal Rule and Simpson’s Rule

I f has a continuous second derivative on [a, b], then the error E in approxi-
mating J> f(x) dx by the Trapezoidal Rule is
(b —a)

E < ~———[max [f"()|],

122 a<x<hb.

Trapezoidal Rule
Moreover, if f has a continuous fourth derivative on [a, b], then the error E in
approximating ¥ f(x) dx by Simpson’s Rule is

(b —ay

S S ) = =
E < gomt [max | f@(x)]], a<x<b

Simpson’s Rule

Theorem 4.19 states that the errors generated by the Trapezoidal Rule and
Simpson’s Rule have upper bounds dependent on the extreme values of f“(x) and
f@(x) in the interval [a, b]. Furthermore, these errors can be made arbitrarily small
by increasing n. provided that f”and £ are continuous and therefore bounded in
[a, b].

EXAMPLE 3 The Approximate Error in the Trapezoidal Rule
=

Determine a value of n such that the Trapezoidal Rule will approximate the value of
o /1 + x dx with an error that is less than 0.01.

Solution Begin by letting f(x) = /1 + x* and finding the second derivative of f.

Fix) =x(1 +x*)~Y2  and ) = (1 + x3)73?
The maximum value of |f”(x)| on the interval [0, 1]is |f7(0)| = 1. So, by Theorem
4.19, you can write
(b —a)’
12n2

1 1
12n2 (1) = 12n?%

Es |f0)] =

To obtain an error E that is less than 0.01, you must choose n such that

1/(12n2) < 1/100.
100 < 1202 n> ¥ =~289

So, you can choose n = 3 (because n must be greater than or equal to 2.89) and apply
the Trapezoidal Rule, as shown in Figure 4.45, to obtain

1 .
Jmdxzé[\/l—-k_oi+2\/li+(-§)2+2‘/l+(%)2+ 7]
0

=~ 1.154.

So, with an error no larger than 0.01, you know that

1
1.144 < J V1 + x2dx < 1.164.
0
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Exercises for Section 4.6

In Exercises 1-10, use the Trapezoidal Rule and Simpson’s Rule
to approximate the value of the definite integral for the given
value of 7. Round your answer to four decimal places and com-
pare the results with the exact value of the definite integral.

2 [ X2
1.fx2dx, n=4 2.] (—+1)dx, n=4
0 o \2
2! 21
3.fx3dx, n=4 4,f7dx, n=4
0 | X
2 8
5.fx3dx, n=8 6.f%dx, n=38
09 03
7.f Jxdx, n=38 8.f(4—x2)dx, n=4
4 [

5 2
9, f %dx, n=4 10. j X2+ 1dy, n=4
;) e+ 1) 0

PP In Exercises 11~20, approximate the definite integral using the
Trapezoidal Rule and Simpson’s Rule with n = 4. Compare
these results with the approximation of the integral using a
graphing utility.

2
11. f V1 + B3dx
0

Fer

2
1
12, | ——dx
J;) VI + i3
14, f VX sin x dx
/2

Jul4
16. f tan x2 dx
0

/2
18. f V1 + cos?xdx
0

1
13.f VT = xdx
0
Jaf3
lS.f cos x2 dx
0]

1
17. f sin x% dx
|

/4
19. f X tan x dx
0

20. fowf(x) de, f(x)=4{ %

Writing About Concepts

21. If the function f is concave upward on the interval [a, b],
will the Trapezoidal Rule yield a result greater than or less
than [ £(x) dx? Explain.

The Trapezoidal Rule and Simpson’s Rule yield approxi-
mations of a definite integral [ f(x) dx based on polyno-
mial approximations of f, What degree polynomial is used
for each?

22,

In Exercises 23-28, use the error formulas in Theorem 4.19 to
estimate the error in approximating the integral, with n = 4,
using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

2 3
23. f x3dx 24. f (2x + 3) dx
0 |

See www.CalcChat.com for worked-out solutions to odd-numbered exercises

|
x |
0

27. f cos x dx
0

dx

M|
26. J; (x__l—)zdx

|
28. f sin(7rx) dx
0

x+ 1

In Exercises 29~34, use the error formulas in Theorem 4.19 to
find n such that the error in the approximation of the definite
integral is less than 0.00001 using (a) the Trapezoidal Rule and

(b) Simpson’s Rule.
I
1
30. f L

3
|
32. —=dx
J] Jx
7/2
34, f sin x dx
0

ldx

3
29.f
X

2
31. f Vx + 2dx
0
I

dx

33. j. cos(mx) dx
0

In Exercises 35-38, use a computer algebra system and the
error formulas to find n such that the error in the approxima-
tion of the definite integral is less than 0.00001 using (a) the
Trapezoidal Rule and (b) Simpson’s Rule.

2 2
35.f V1 + xdx 36.f (x + )23 dx
o 0
1

!
37. f tan x2 dx 38. f sin x? dx
0 0

39. Approximate the area of the shaded region using (a) the
Trapezoidal Rule and (b) Simpson’s Rule with n = 4.

t———————
5 2 4 6 8

Figure for 39 Figure for 40

40. Approximate the area of the shaded region using (a) the

Trapezoidal Rule and (b) Simpson’s Rule with n = 8.

de" 41. Programming Write a program for a graphing utility to

approximate a definite integral using the Trapezoidal Rule and
Simpson’s Rule. Start with the program written in Section 4.3,
Exercises 59-62, and note that the Trapezoidal Rule can be
written as T(n) = 3[L(n) + R(n)] and Simpson’s Rule can be
written as

S(n) %[T(n/Z) + 2M(n/2)].

[Recall that L(n), M(n), and R(n) represent the Riemann sums
using the left-hand endpoints, midpoints, and right-hand
endpoints of subintervals of equal width.]



Programming In Exercises 42-44, use the program in Exercise
41 to approximate the definite integral and complete the table.

S(n)—|

n L(n) | M(n) | R(n) | T(n)

10

12

16

20

4 | 4
42, J V2 +3x2dx 43, J J1 —x2dx 44, j sin Vx dx
0 0

0

45. Area Use Simpson’s Rule with n = 14 to approximate the
area of the region bounded by the graphs of y = Jx cos x,
y=0,x=0,and x = /2.

46. Circumference The elliptic integral
w/2 —
8\/§J J1 - %sin2 040
0

gives the circumference of an ellipse. Use Simpson’s Rule with
n = 8 to approximate the circumference.

47. Work To determine the size of the motor required to operate
a press, a company must know the amount of work done when
the press moves an object linearly 5 feet. The variable force to
move the object is

F(x) = 100x/125 — ¥°

where F is given in pounds and x gives the position of the unit
in feet. Use Simpson’s Rule with n = 12 to approximate the
work W (in foot-pounds) done through one cycle if

ve [ o

48. The table lists several measurements gathered in an experiment

to approximate an unknown continuous function y = Flx).

(a) Approximate the integral f3 f(x) dx using the Trapezoidal
Rule and Simpson’s Rule.

x| 000 | 025 | 050 | 075 1.007
|y | 432 | 436 | 458 5.79 6.14|

x| 125 | 150 | 175 | 2.00

y | 725 | 764 | 808 | 8.14

H“' (b) Use a graphing utility to find a model of the form
y = ax? + bx* + cx + d for the data. Integrate the result-
ing polynomial over [0,2] and compare the result with
part (a).
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Approximation of Pi In Exercises 49 and 50, use Simpson’s
Rule with n = 6 to approximate 7 using the given equation. (In
Section 5.7, you will be able to evaluate the integral using
inverse trigonometric functions.)

1/2 |
6 4
49. 7 = —_— LT = S
T J; dx 50. J‘) T 2 dx

NAE
Area In Exercises 51 and 52, use the Trapezoidal Rule to
estimate the number of square meters of land in a lot where x
and y are measured in meters, as shown in the figures. The land
is bounded by a stream and two straight roads that meet at right

angles.
51. x y_‘ ¥
0] 125 150 + - Road
100 125 7 f!-ilr;’.;lm
200 | 120 100 4 -
300 | 112 i
400 | 90 50 Road
500 90 » /
600 95 bttt
700 38 200 400 600 800 1000
800 75
900 35
1000 0
52. x y
> A Road
0 75 80 - /Sm:um
10 81 2] .
20 84 60:
30 76 40 4
40 67 20 : Raad
50 68 A )
60 69 L
70 7 20 40 60 80 100 120
80 | 68
90 56
100 42
110 23 |
120 0

53. Prove that Simpson’s Rule is exact when approximating the
integral of a cubic polynomial function, and demonstrate the
result for fy x* dx, n = 2.
fd[‘"' 54. Use Simpson’s Rule with n =10 and a computer algebra
system to approximate ¢ in the integral equation

1
J sin Vxdx = 2.
(

}

55. Prove that you can find a polynomial p(x) = Ax? + Bx + C
that passes through any three points (x,, y1)» (5. %), and

(3, ), where the x;'s are distinct.
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In Exercises 1 and 2, use the graph of f”to sketch a graph of f.
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

1. ¥ 2. vy

In Exercises 3-8, find the indefinite integral.

3. f(2x2+x— 1) dx

2
4. | —=dx
f 3/3x

13.

14,

15.

16.

See www.CalcChat,com for worked-out solutions to odd-numbered exercises.

Velocity and Acceleration An airplane taking off from a
runway travels 3600 feet before lifting off. The airplane starts
from rest, moves with constant acceleration, and makes the run
in 30 seconds. With what speed does it 1ift off?

Velocity and Acceleration The speed of a car traveling in a
straight line is reduced from 45 to 30 miles per hour in a
distance of 264 feet. Find the distance in which the car can be
brought to rest from 30 miles per hour, assuming the same
constant deceleration.

Velocity and Acceleration A ball is thrown vertically upward
from ground level with an initial velocity of 96 feet per second.

(a) How long will it take the ball to rise to its maximum height?
(b) What is the maximum height?

() When is the velocity of the ball one-half the initial
velocity?

(d) What is the height of the ball when its velocity is one-half
the initial velocity?

Velocity and Acceleration Repeat Exercise 15 for an initial

W

o0

10

3+
.fx SN
X

J

B s T A
¥

3

~dlx

f (4x — 3 sin x) dv
g f(Scosx — 2sec?x) dx

. Find the particular solution of the differential equation
f'x) = —2x whose graph passes through the point (— 1, 1).

. Find the particular solution of the differential equation
f"(x) = 6(x — 1) whose graph passes through the point (2, 1)
and is tangent to the line 3x — y — 5 = 0 at that point.

velocity of 40 meters per second.

In Exercises 17-20, use sigma notation to write the sum.

1 1 1 1
17.@4‘@4‘@4‘"'4‘@

142 242 342 1242
£ ) F 200 T 2@ T T 2(12)

S
20, 3<2+3)+. . .+3n<2+@)

In Exercises 21-24, use the properties of summation and
Theorem 4.2 to evaluate the sum.

HV Slope Fields In Exercises 11 and 12, a differential equation, a

point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the stope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, go to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.

dy dy 1
11.a=2x—4, (4,—2) 12.E=§x2—2x, (6,2)

y y
|._L._.[_-._ b x S NNNNNSN—=/ /7777

{ TNNNNANN=C 777y
—|-\\\\—///f.*_5 f.-——\\\\\:—;/////
VAENNN—, /7 /77 )] F/42NNANNN—v /777y
vy \\\_////.-/ FATSNANNNNN—V /777
R NN FAENNANNNNN= 77777
VARNNSN=C7 770 2 NN A
VAFNNSN—~ 770 f'.”'\tttt\_//j.//
L — /NN N—s777 77

N tt:_:;f;’; I/-\\\}\\:—//;/N
1\ / {7TNNANMNNN— L78 0 f
VY YNNSN—~V 1 B s o o e e 227 B R
VYR ANNN—~ /77 1) 4 '~_-.\'-.\—/--a’-’_/7
0 NN 2 NN ¢
'—6]1\\\—////f/ RN N

21.

23.

25.

26.

10 20

3 22, % (4i - 1)
i=1 i=1
20 12
> G+ 1y 24, i(i2 — 1)
=1 i=1

Write in sigma notation (a) the sum of the first ten positive odd
integers, (b) the sum of the cubes of the first positive integers,
and ()6 + 10+ 14 + 18 + - - - + 42.
Evaluate each sum for x, = 2,x, = —1, x3=5,x =3, and
X5 =

13 51
(& 5% (b) ,21 p

5
(d E(xi — xi-1)
=2



In Exercises 27 and 28, use upper and lower sums to approxi-
mate the area of the region using the indicated number of subin-
tervals of equal width.

10 1
27'y:x2+1 28. y=9 — ;x?
y ¥
A 1
10+ 10
8] 8
6 6+
4 4
24 2
1. 0 -
| I 2 I 2 4 0

In Exercises 29-32, use the limit process to find the area of the
region between the graph of the function and the x-axis over the
given interval. Sketch the region.

29. y=6—x [0,4]
3. y=5-x% [-2,1]

30. y=x2+3, [0,2]
32' y = 4_11'X3s [2> 4]

33. Use the limit process to find the area of the region bounded by
x=5y—y4,x=0,y=2,andy = 5.
34. Consider the region bounded by y = mx,y = 0,x = 0, and
x = b.
(a) Find the upper and lower sums to approximate the area of
the region when Ax = b/4.
(b) Find the upper and lower sums to approximate the area of
the region when Ax = b/n.
(c) Find the area of the region by letting n approach infinity in
both sums in part (b). Show that in each case you obtain the
formula for the area of a triangle.

In Exercises 35 and 36, write the limit as a definite integral on
the interval [a, b], where ¢, is any point in the ith subinterval.

Limit Interval
5. li 2¢c; — : ;
3 Jim 121 (2¢; — 3) Ax; [4, 6]
6. lim S 3¢9 — ¢) Ax, ,
3 Jim izl 3¢,(9 — ¢ Ax; [1,3]

In Exercises 37 and 38, set up a definite integral that yields the
area of the region. (Do not evaluate the integral.)

37. fix) =3x+ 6 38. flx) =9 — x*

y o
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In Exercises 39 and 40, sketch the region whose area is given by
the definite integral. Then use a geometric formula to evaluate
the integral.

39. f(s — v — 5] dx

0

4
40. J J16 — x%dx
-4

6

6
41. Given J Fflx)ydx =10 andj g(x) dx = 3, evaluate
2 2

6 6
@ f [f6) + @] dx. ® f LFG) — g0 d.

6 6
© f 26 — 3] dx. (@ j SFG) d

3
42. Given f fx)dx = 4and f Fx) dx = —1, evaluate
o 3

3

(b) Lf(x) dx.
6

G j —10 f(x) dx.
3

In Exercises 4350, use the Fundamental Theorem of Calculus
to evaluate the definite integral.

43, f4 2+ x)dx

1
44. J (r2+2)dt
0 —1

I 2
4s. j (@4r — 27) dt 46. f (x* + 2x2 — 5) dx
. .
i 211
47. f x/x dx 48. J (—2 - —3) dx
4 | \X X
3m/4 /4
49, J sin 6d6 50. f sec? t dt
0 —7/4

In Exercises 51-56, sketch the graph of the region whose area is
given by the integral, and find the area.

51. JS (2x — 1) dx 52. Jz (x +4)dx

o]

4 2
53. j (x* —9) dx 54, f (—x®+x+2)dx
3

=1

55. Ll(x—x3)dx 56. le/}(l—x)dx

In Exercises 57 and 58, determine the area of the given region.

57. y = sinx 58. y =x +cosx

b y
j
|
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In Exercises 59 and 60, sketch the region bounded by the graphs
of the equations, and determine its area.

59.y=$, y=0, x=1, x=9

60, y =sec’x, y=0, x=0, x=7§r

In Exercises 61 and 62, find the average value of the function
over the given interval. Find the values of x at which the
function assumes its average value, and graph the function.

i

6L f(x) = —=, [4,9]

7 62. f(x) = 3, [0,2]

In Exercises 63-66, use the Second Fundamental Theorem of
Calculus to find F’(x).

63. F(x) = fﬂ\/l Y Odt 64. F(x) :f rlzdz

0 |

66. F(x) = fcscztdt

65. F(x) = f (2 + 3+ 2) dr
=1 0

In Exercises 67-80, find the indefinite integral.

2
67. f{.r-‘ 1) ey 68. f(x +%> dx

69. J’—J“_H dx 70. f 2/ F 3dx

i +3

71 |a(l — 3% dx N

f\{] ) dlx 72 J.(x2+6x—5)2dx
73. J-qin".-.‘ cos & dv 74. fx sin 3x2 dx

sin i COS5 X

75. — ¢ff) 76, | ——=dx

J\,’I = €08 ”r j\./s}n .\‘“
77. It:m“ xsec? xd, n#-—1 78. J-se.c 2y tan 2v dx

79. J’H + sec 7 x)’ secx tanmwx dx 80, Jcm* o ese” ev de

In Exercises 81-88, evaluate the definite integral. Use a
graphing utility to verify your result.

2 |
81. I x(x2 — 4) dx 82. f xX2(x3 + 1P dx
| 0

3 6
1 X
83. ————7) 84. ————————(/]
_I(;\/l'l-x g £3\/x2—8 .
0

I
85. 27TJ- (y+ DV —ydy 86. 27| x2Vx + ldx
0 _
T 7 /4 :
87. f cos = dx 88. f sin 2x dx
0 2 —n/4

H"" Slope Fields 1In Exercises 89 and 90, a differential equation, a

point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.)

(b) Use integration to find the particular solution of the differ-
ential equation and use a graphing utility to graph the solution.

8. Yo o=2 0.-4 9. 2= _L e 0.0
dx dx 2

3
|
|

—_——
A

e e

1
L] e

o S S S
|

!
L
IS

In Exercises 91 and 92, find the area of the region. Use a
graphing utility to verify your result.

9
91.fx\3/x—1dx
!

) Y

/2
92. J. [cos x + sin(2x)] dx
0

18
15

TR S A S -
-6 -3 36 9 12

93. Fuel Cost Gasoline is increasing in price according to the
equation p = 1.20 + 0.04¢, where p is the dollar price per
gallon and ¢ is the time in years, with t = 0 representing 1990.
An automobile is driven 15,000 miles a year and gets M miles
per gallon. The annual fuel cost is

1+
C = 15,000
M t
Estimate the annual fuel cost in (a) 2000 and (b) 2005.

94. Respiratory Cycle After exercising for a few minutes, a
person has a respiratory cycle for which the rate of air intake is

pdt.

Tt
= L1.75 sin —.
v=17 sm2

Find the volume, in liters, of air inhaled during one cycle by
integrating the function over the interval [0, 2].

In Exercises 95-98, use the Trapezoidal Rule and Simpson’s Rule
with n = 4, and use the integration capabilities of a graphing
utility, to approximate the definite integral, Compare the results.

2 1 | X3 /2
95. | ——ax 9. dx
L+ X o

3 —x2
/2 T
97. f Vx cos x dx 98, f V1 + sin? x dx
0 0



Problem Solving

5
1. Let L(x) =j 7dt, x> 0.
|

(a) Find L(1).
(b) Find L'(x) and L'(1).

(c) Use a graphing utility to approximate the value of x (to three
decimal places) for which L(x) = 1.

(d) Prove that L(x,x,) = L(x,) + L(x,) for all positive values of
X, and x,.

’dF’ 2. Let F(x) = j sin 2 dr.
2

(a) Use a graphing utility to complete the table.

x 0 1.0 1.5 1.9 2.0
F(x)
x 2.1 2.5 3.0 4.0 5.0
F(x)

1 N O I .
(b) Let G(x) = — 2F(x) == ZJ sin £2 dt. Use a graphing

2

utility to complete the table and estimate lirr% G(x).
=

x 19 | 195 | 1.99 | 201 | 2.1
G(x)

(¢) Use the definition of the derivative to find the exact value of
the limit lirr; G(x).
x—

P[F’ In Exercises 3 and 4, (a) write the area under the graph of the
given function defined on the given interval as a limit. Then use
a computer algebra system to (b) evaluate the sum in part
(a), and (c) evaluate the limit using the result of part (b).

3.y =x*— 43 + 4%, [0,2]
nln + 1)(2n + 1)(3n* + 3n —1_))

(Him: '2’ it = 30

i=1

4. y= %xs +2x3, [0,2]
g nin + 1)2(2n2 + 2n — 1])

<Hint.' 2 5= o

i=1

5. The Fresnel function S is defined by the integral

S(x) = L ) sin(%‘z> .

24
(a) Graph the function y = sin(%—) on the interval [0, 3].
(b) Use the graph in part (a) to sketch the graph of S on the
interval [0, 3].
(¢) Locate all relative extrema of S on the interval (0, 3).

(d) Locate all points of inflection of S on the interval (0, 3).

P.S. Problem Solving 319

See www.CalcChat com for worked-out solutions to odd-numbered eXercises.

. The Two-Point Gaussian Quadrature Approximation for f is

[ 3)

i
(a) Use this formula to approximate f cos x dx. Find the error

of the approximation. -
i

|
(b) Use this formula to approximate j T+ 2 dx.
I

(c) Prove that the Two-Point Gaussian Quadrature Approxi-
mation is exact for all polynomials of degree 3 or less.

. Archimedes showed that the area of a parabolic arch is equal to %

the product of the base and the height (see figure).

b

(a) Graph the parabolic arch bounded by y = 9 — x? and the
x-axis. Use an appropriate integral to find the area A.

(b) Find the base and height of the arch and verify Archimedes’
formula.

(c) Prove Archimedes’ formula for a general parabola.

. Galileo Galilei (1564-1642) stated the following proposition

concerning falling objects:

The time in which any space is traversed by a uniformly
accelerating body is equal 1o the time in which that same
space would be traversed by the same body moving at a
uniform speed whose value is the mean of the highest
speed of the accelerating body and the speed just before
acceleration began.

Use the techniques of this chapter to verify this proposition.

. The graph of the function f consists of the three line segments

joining the points (0, 0), (2, —2), (6, 2), and (8, 3). The function
F is defined by the integral

Flx) = fo }(t) dt.

(a) Sketch the graph of f.
(b) Complete the table.

\x012345678
‘F(x)

(c) Find the extrema of F on the interval [0, 8].
(d) Determine all points of inflection of F on the interval (0, 8).
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10. A car is traveling in a straight line for 1 hour. Its velocity v in
miiles per hour at six-minute intervals is shown in the table.

¢ (hours) 0 0.1 0.2 0.3 0.4 0.5

v (mi/h) 0 10 20 40 60 50

t (hours) | 0.6 0.7 0.8 0.9 1.0 I
v (mi/h) 40 35 40 50 65 ‘

(a) Produce a reasonable graph of the velocity function v by
graphing these points and connecting them with a smooth
curve.

(b) Find the open intervals over which the acceleration a is
positive.

(c) Find the average acceleration of the car (in miles per hour
squared) over the interval [0, 0.4].

(d) What does the integral f,v(z) dt signify? Approximate this
integral using the Trapezoidal Rule with five subintervals,

(¢) Approximate the acceleration at t = 0.8.

. Prove L T HO = ) ds = fo < fo ") dv) at.

HJ%wff@ﬂﬂw=%U@P—U@H

1

et

13. Use an appropriate Riemann sum to evaluate the limit

lim\/T+\/§+\/§+~-+\/ﬁ

n—oe ”':l,fz

14. Use an appropriate Riemann sum to evaluate the limit

P A+ 35S
lim ;

n—o0 n6

15. Suppose that f is integrable on [a, 5] and 0 < m < fx) < Mm
for all x in the interval [a, b]. Prove that

ma — b) < f S&x) dx < M(b — a).

1
Use this result to estimate f V1 + x4 dx.
0

16. Let f be continuous on the interval [0, 5] where
f&) + f(b = x) # 0on ][0, b].

b
) _b
(a) Show thatj(; mdx =5

(b) Use the result in part (a) to evaluate

' sin.x ”
y sin (1 — x) + sinx “"

(c) Use the result in part (a) to evaluate

J: \/T—Jr\/j;——: dx.

17. Verity that

iiz _ n(n + 1)(2n + 1)

=1 6

by showing the following.

@ 1+ -—B=324+3+1

®) (m+1P=DG2+3i+1)+1

i=1

© é:]iz _ n(n + 1)6(2.4 + 1)

18. Prove that if f is a continuous function on a closed interval
[a, b], then

L@wm

19. Let

1= J:f(x) dx

b
< f |F()| dx.

where f is shown in the figure. Let L(i) and R(x) represent the
Riemann sums using the left-hand endpoints and right-hand
endpoints of n subintervals of equal width, (Assume » is even.)
Let T(n) and S(n) be the corresponding values of the
Trapezoidal Rule and Simpson’s Rule.

(a) For any n, list L(n), R(n), T(n), and I in increasing order.
(b) Approximate S(4).
y

20. The sine integral function

Sl(x) _ s ¢
0

. . . . . sint,
is often used in engineering. The function o= i not

defined at ¢t = 0, but its limit is 1 as r— 0. So, define f(0) = 1.
Then f is continuous everywhere.

(a) Use a graphing utility to graph Si(x).

(b) At what values of x does Si(x) have relative maxima?

(¢) Find the coordinates of the first inflection point where
x> 0.

(d) Decide whether Si(x) has any horizontal asymptotes. If so,
identify each.



