Conics, Parametric
Equations, and Polar
Coordinates

During the 2002 Winter Olympic Games, the Olympic rings were
lighted high on a mountainside in Salt Lake City. The volunteers
who installed the lights for the display took care to minimize the
environmental impact of the project. How can you calculate the area
enclosed by the display? Explain.

In the polar coordinate system,
graphing an equation involves E b & ol §
tracing a curve about a fixed point T L dlg

called the pole. Consider a region % =
. . B

bounded by a curve and by the rays e
that contain the endpoints of an - 3 . - & - i — .-/
= e — = Z

interval on the curve. You can use
sectors of circles to approximate the
area of such a region. In Chapter 10,
you will see how the limit process

can be used to find this area. : ) =

Harry Howe/Gelty Images

L AT



694 CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates

B T g .
L }-_._‘;-3_;_1_3.:%:5-.&’_*}_-?. 0 Conics and Calculus

* Understand the definition of a conic section.

* Analyze and write equations of parabolas using properties of parabolas.

* Analyze and write equations of ellipses using properties of ellipses.

* Analyze and write equations of hyperbolas using properties of hyperbolas.

Conic Sections

Each conie section (or simply conic) can be described as the intersection of a plane
and a double-napped cone. Notice in Figure 10.1 that for the four basic conics. the
intersecting plane does not pass through the vertex of the cone. When the plane passes
through the vertex, the resulting figure is a degenerate conice, as shown in Figure 10.2.

i T %/ ny / A\NF 4
g \J(, \ ./
3 : \ \
HypaTia (370-4154.D.) Y L /
The Greeks discovered conic sections sometime F’-._ / I Y 4 /

between 600 and 300 B.c. By the beginning 1
of the Alexandrian period, enough was known

about conics for Apollonius (262-190 B.c.) to Circle Parabola Ellipse Hyperbola
produce an eight-volume work on the subject. Conic sections
Later, toward the end of the Alexandrian Figure 10.1

period, Hypatia wrote a textbook entitled On
the Conics of Apollonius. Her death marked
the end of major mathematical discoveries in
Europe for several hundred years.
The early Greeks were largely concerned
with the geometric properties of conics. It :
was not until 1900 years later, in the early
seventeenth century, that the broader applica-
bility of conics became apparent. Conics then \
played a prominent role in the development of
calculus.

Point Line Two intersecting lines
Degenerate conics
Figure 10.2

There are several ways to study conics. You could begin as the Greeks did by
defining the conics in terms of the intersections of planes and cones, or you could

define them algebraically in terms of the general second-degree equation

Ax? + Bxy + Cy2 + Dx + Ey + F=0. General second-degree equation

FOR FURTHER INFORMATION To learn ~ However, a third approach, in which each of the conics is defined as a locus (collec-

more about the mathematical activities tion) of points satisfying a certain geometric property, works best. For example, a circle
of Hypatia, see the article “Hypatia and can be defined as the collection of all points (, y) that are equidistant from a fixed point
Her Mathematics” by Michael A. B. (h, k). This locus definition easily produces the standard equation of a circle

Deakin in The American Mathematical

Monthly. To view this article, go to the (x — h)? + (y — k)? = r2, Standard equation of a circle

website www.matharticles.com.
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Figure 10.3

Parabola with a vertical axis, p < 0
Figure 10.4
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Parabolas

A parabola is the set of all points (x, y) that are equidistant from a fixed line called
the directrix and a fixed point called the focus not on the line. The midpoint between
the focus and the directrix is the vertex, and the line passing through the focus and the
vertex is the axis of the parabola. Note in Figure 10.3 that a parabola is symmetric
with respect to its axis.

THEOREM 0.1 Standard Equation of a Parabola

The standard form of the equation of a parabola with vertex (h, k) and
directrix y =k — pis

(x - h)2 . 4p(y - k). Vertical axis
For directrix x = h — p, the equation is
(y - k)2 = 4p(x - h). Horizontal axis

The focus lies on the axis p units (directed distance) from the vertex. The coor-
dinates of the focus are as follows.

(h, k + p) Vertical axis
(h+p, k) Horizontal axis

EXAMPLE | Finding the Focus of a Parabola

Find the focus of the parabola given by y = —%xz —x+ %

Solution To find the focus, convert to standard form by completing the square.

y = % - X %xz Rewrite original equation.
y = %(l - 2x - xz) Factor out %
2y =1-—2x — s Multiply each side by 2.
2y =1— (x2 + 2x) Group terms.
2y =2 — x2+2x+1) Add and subtract 1 on right side.
X24+2x+1=-2y+2
x+1D2==-2(y - 1) Write in standard form.

Comparing this equation with (x — #)? = 4p(y — k), you can conclude that
h=-1, k=1, and p=—3
Because p is negative, the parabola opens downward, as shown in Figure 10.4. So, the
focus of the parabola is p units from the vertex, or
(mk+p) =(-13). Focus

A line segment that passes through the focus of a parabola and has endpoints on
the parabola is called a focal chord. The specific focal chord perpendicular to the axis
of the parabola is the latus rectum. The next example shows how to determine the
length of the latus rectum and the length of the corresponding intercepted arc,
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Length of latus rectum: 4p
Figure 10.5
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Parabolic reflector: light is reflected in
parallel rays.
Figure 10.6

EXAMPLE 2 Focal Chord Length and Arc Length

R

Find the length of the latus rectum of the parabola given by x2 = 4py. Then find the
length of the parabolic arc intercepted by the latus rectum.

Solution  Because the latus rectum passes through the focus (0, p) and is perpendic-
ular to the y-axis, the coordinates of its endpoints are (—x, p) and (x, p). Substituting
p for y in the equation of the parabola produces

x2 = 4p(p) x = x2p,

So, the endpoints of the latus rectum are (—2p, p) and (2p, p), and you can conclude
that its length is 4p, as shown in Figure 10.5. In contrast, the length of the intercepted
arc is

2p
§ = j JV1+ (y’)2 dx Use arc length formula.
—2p

2p B 2
o 2 p 4p

1 2p
= ;f Vap? + x? dx Simplify
0
2p

1
= Z[x\%pz + x2 + 4p?ln|x + V4p? + x2|} Theorem 8.2

= ﬁ[Zp\/W + 4p210(2p + /8p%) — 4p2 In(2p)]
= 2p[V2 + n(1 + V2)]

One widely used property of a parabola is its reflective property. In physics, a
surface is called reflective if the tangent line at any point on the surface makes equal
angles with an incoming ray and the resulting outgoing ray. The angle corresponding
to the incoming ray is the angle of incidence, and the angle corresponding to the
outgoing ray is the angle of reflection. One example of a reflective surface is a flat
mirror.

Another type of reflective surface is that formed by revolving a parabola about its
axis. A special property of parabolic reflectors is that they allow us to direct all incom-
ing rays parallel to the axis through the focus of the parabola—this is the principle
behind the design of the parabolic mirrors used in reflecting telescopes. Conversely,
all light rays emanating from the focus of a parabolic reflector used in a flashlight are
parallel, as shown in Figure 10.6.

‘ THEOREM 10.2 Reflective Property of a Parabola

Let P be a point on a parabola. The tangent line to the parabola at the point P
makes equal angles with the following two lines.

’ 1. The line passing through P and the focus

2. The line passing through P parallel to the axis of the parabola

:ﬁw D indicates that in the HM mathSpace® CD-ROM and the online Eduspace® system
Jor this text, you will find an Open Exploration, which further explores this example using the
computer algebra systems Maple, Mathcad, Mathematica, and Derive.
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Ellipses

More than a thousand years after the close of the Alexandrian period of Greek
mathematics, Western civilization finally began a Renaissance of mathematical and
scientific discovery. One of the principal figures in this rebirth was the Polish
astronomer Nicolaus Copernicus. In his work On the Revolutions of the Heavenly
Spheres, Copernicus claimed that all of the planets, including Earth, revolved about
the sun in circular orbits. Although some of Copernicus’s claims were invalid, the
controversy set off by his heliocentric theory motivated astronomers to search for a
mathematical model to explain the observed movements of the sun and planets. The
first to find an accurate model was the German astronomer Johannes Kepler
(1571-1630). Kepler discovered that the planets move about the sun in elliptical
orbits, with the sun not as the center but as a focal point of the orbit.

= iy The use of ellipses to explain the movements of the planets is only one of many
ST T S R & practical and aesthetic uses. As with parabolas, you will begin your study of this
NicoLaus CoPERNICUS (1473-1543) second type of conic by defining it as a locus of points. Now, however, two focal
points are used rather than one.

Bettmann/Corbi

Copernicus began to study planetary motion

when asked to revise the calendar. At that An ellipse is the set of all points (x, y) the sum of whose distances from two
time, the exact length of the year could not be distinct fixed points called foci is constant. (See Figure 10.7.) The line through the foci
accurately predicted using the theory that intersects the ellipse at two points, called the vertices. The chord joining the vertices
Earth was the center of the universe. is the major axis, and its midpoint is the center of the ellipse. The chord perpendicular

to the major axis at the center is the minor axis of the ellipse. (See Figure 10.8.)

Vertex

___________ RPE=
FOR FURTHER INFORMATION To learn JROEH
about how an ellipse may be “exploded”
into a parabola, see the article “Exploding
the Ellipse” by Arnold Good in
Mathematics Teacher. To view this article,

go to the website www.matharticles.com.

i
_~Minor axis

Figure 10.7 Figure 10.8

THEOREM 10.3 Standard Equation of an Ellipse

The standard form of the equation of an ellipse with center (h, k) and major and
minor axes of lengths 2a and 2b, where a > b, is

x—h*, G-k
a? u 2 L

Major axis is horizontal.

i or

/ w—n G-k

b? a?

1. Major axis is vertical.

The foci lie on the major axis, ¢ units from the center, with ¢? = a? — b2

NOTE  You can visualize the definition of an ellipse by imagining two thumbtacks placed at
the foci, as shown in Figure 10.9. If the ends of a fixed length of string are fastened to the
thumbtacks and the string is drawn taut with a pencil, the path traced by the pencil will be an

Figure 10.9 ellipse.
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EXAMPLE 3 Completing the Square

Find the center, vertices, and foci of the ellipse given by

42+ y2 —8x+ 4y — 8= 0.

Solution By completing the square, you can write the original equation in standard
form.
4x? + y2 — 8x + 49 -8=0 Write original equation,
42 — 8x +y2 + 4y =8
402 =22+ 1)+ (2 +dy+4)=8+4+4
4x—-12+(y+2)2=16

£ _4 P, 0 Ir62)2 =1 Write in standard form.
So, the major axis is parallel to the y-axis, where h = 1, k= —2,a=4,b =2, and
c =16 —4 = 2./3. So, you obtain the following.
Center: (1, —2) (h, k)
Vertices: (1, —6) and (1, 2) (hk £ a)
Foci: (1,2 - 2/3)and(1, -2 + 2./3) (hk % ¢)
The graph of the ellipse is shown in Figure 10.10. _

NOTE If the constant term F = —8§ in the equation in Example 3 had been greater than or
equal to 8, you would have obtained one of the following degenerate cases.

—1)2 + 2)2
1. F = 8, single point, (1, —2): & 4 b 162) -0

x-12 (+2)
VTS

2
2. F > 8, no solution points: <0

EXAMPLE 4 The Orbit of the Moon

The moon orbits Earth in an elliptical path with the center of Earth at one focus, as
shown in Figure 10.11. The major and minor axes of the orbit have lengths of 768,800
kilometers and 767,640 kilometers, respectively. Find the greatest and least distances
(the apogee and perigee) from Earth’s center to the moon’s center.

Solution  Begin by solving for a and b.

2a = 768,800 Length of major axis
a = 384,400 Solve for a.

2b = 767,640 Length of minor axis
b = 383,820 Solve for b.

Now, using these values, you can solve for ¢ as follows.
¢ = JVa*— b?=~ 21,108

The greatest distance between the center of Earth and the center of the moon is
a + ¢ = 405,508 kilometers, and the least distance is a — ¢ ~ 363,292 kilometers.



FOR FURTHER INFORMATION For
more information on some uses of the
reflective properties of conics, see the
article “Parabolic Mirrors, Elliptic and
Hyperbolic Lenses” by Mohsen
Maesumi in The American Mathematical
Monthly. Also see the article “The
Geometry of Microwave Antennas” by
William R. Parzynski in Mathematics
Teacher.

Foci

(a) € is small.
a

Foci

i
,
N

(b) N is close to 1.
a

. . ¢
Eccentricity is the ratio —.
Figure 10.12
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Theorem 10.2 presented a reflective property of parabolas. Ellipses have a similar
reflective property. You are asked to prove the following theorem in Exercise 110.

e |

Let P be a point on an ellipse. The tangent line to the ellipse at point P makes
equal angles with the lines through P and the foci.

THEOREM 10.4 Reflective Property of an Ellipse

One of the reasons that astronomers had difficulty in detecting that the orbits of
the planets are ellipses is that the foci of the planetary orbits are relatively close to the
center of the sun, making the orbits nearly circular. To measure the ovalness of an
ellipse, you can use the concept of eccentricity.

Definition of Eccentricity of an Ellipse ‘

The eccentricity e of an ellipse is given by the ratio

C ‘
e=;.
|

To see how this ratio is used to describe the shape of an ellipse, note that because
the foci of an ellipse are located along the major axis between the vertices and the
center, it follows that

0<c<a.

For an ellipse that is nearly circular, the foci are close to the center and the ratio ¢/a
is small, and for an elongated ellipse, the foci are close to the vertices and the ratio is
close to 1, as shown in Figure 10.12. Note that 0 < e < 1 for every ellipse.

The orbit of the moon has an eccentricity of e = 0.0549, and the eccentricities of
the nine planetary orbits are as follows.

Mercury: e = 0.2056 Saturn: e = 0.0542
Venus: e = 0.0068 Uranus: e = 0.0472
Earth: e = 0.0167 Neptune: e = 0.0086
Mars: e = 0.0934 Pluto: e = 0.2488

Jupiter;: e = 0.0484
You can use integration to show that the area of an ellipse is A = mab. For
instance, the area of the ellipse

x2 y2
PR I

is given by

= = a? cos? 6.d6. Trigonometric substitution x = a sin 6.

However, it is not so simple to find the circumference of an ellipse. The next example
shows how to use eccentricity to set up an “elliptic integral” for the circumference of
an ellipse.



700 CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates

.—’w

b

AREA AND CIRCUMFERENCE OF AN ELLIPSE

In his work with elliptic orbits in the early
1600’s, Johannes Kepler successfully developed
a formula for the area of an ellipse,

A = 7rab.He was less successful in
developing a formula for the circumference

of an ellipse, however; the best he could do
was to give the approximate formula

C= w(a + b).

C = 28.36 units

Figure 10.13

2P EXAMPLE 5  Finding the Circumference of an Ellipse
— L]

Show that the circumference of the ellipse (x2/a2) + (y2/b%) = 1is
T2
4a V1 — e%sin? 8d6.

(8]

Solution  Because the given ellipse is symmetric with respect to both the x-axis
and the y-axis, you know that its circumference C is four times the arc length of
y = (b/a)/a® — x? in the first quadrant. The function y is differentiable for all x in
the interval [0, a] except at x = a. So, the circumference is given by the improper
integral

d a a T
C=[1lim4f \/1+(y’)2dx:4f \/1+(y’)2dx=4f\/; i
- Jo 0 0

612((,12 — xz)

Using the trigonometric substitution x = a sin 6, you obtain

2
C= 4f A a sz)nzgacose)de

= 4f Ja%cos? 6 + bZsin? 646
0

/2
= 4] a*(1 — sin2 0) + b%sin? 0 d6
0

/2
= 4f var — (a7 — b)sin? 0d8.
0
Because e = ¢2/a? = (a® — b?)/a?, you can rewrite this integral as

/2
—4af V1 — €%sin? 0d6.
0

A great deal of time has been devoted to the study of elliptic integrals. Such
integrals generally do not have elementary antiderivatives. To find the circumference
of an ellipse, you must usually resort to an approximation technique.

EXAMPLE 6 Approximating the Value of an Elliptic Integral
L]

Use the elliptic integral in Example 5 to approximate the circumference of the ellipse

2 2)

2y
=8 n 4 =
25 16 .
Solution Because 2 = ¢2/q? = — b2)/a? = 9/25, you have

J’"P f 9 s1n2 0

Applying Simpson’s Rule with n = 4 produces

C~ 20(%7)(%)[1 + 4(0.9733) + 2(0.9055) + 4(0.8323) + 0.8]

~ 28.36.

So, the ellipse has a circumference of about 28.36 units, as shown in Figure 10.13.
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Hyperbolas

The definition of a hyperbola is similar to that of an ellipse. For an ellipse, the sum
of the distances between the foci and a point on the ellipse is fixed, whereas for a
hyperbola, the absolute value of the difference between these distances is fixed.

A hyperbola is the set of all points (x, y) for which the absolute value of the
difference between the distances from two distinct fixed points called foci is constant.
(See Figure 10.14.) The line through the two foci intersects a hyperbola at two points
called the vertices. The line segment connecting the vertices is the transverse axis,
and the midpoint of the transverse axis is the center of the hyperbola. One
distinguishing feature of a hyperbola is that its graph has two separate branches.

THEOREM 10.5 Standard Equation of a Hyperbola

The standard form of the equation of a hyperbola with center at (h, k) is

(x—hn?  (y—k?
a? b?

=1 Transverse axis is horizoutal.

or

(y —k? (& —h)p?
a? b?

= 1. Transverse axis is vertical.

The vertices are ¢ units from the center, and the foci are ¢ units from the center,
where, ¢ = a®> + b

NOTE The constants @, b, and ¢ do not have the same relationship for hyperbolas as they do
for ellipses. For hyperbolas, ¢ = a® + b2, but for ellipses, ¢* = a* — b

An important aid in sketching the graph of a hyperbola is the determination of its
asymptotes, as shown in Figure 10.15. Each hyperbola has two asymptotes that
intersect at the center of the hyperbola. The asymptotes pass through the vertices of a
rectangle of dimensions 2a by 2b, with its center at (h, k). The line segment of length
2b joining (h, k + b) and (h, k — b) is referred to as the conjugate axis of the
hyperbola.

—

For a horizontal transverse axis, the equations of the asymptotes are

THEOREM 10.6 Asymptotes of a Hyperbola

b b
y=k+=(x—h) and y=k——=(—h).
a a
For a vertical transverse axis, the equations of the asymptotes are

y=k+%(x—h) and y=k—%(x—h).

In Figure 10.15 you can see that the asymptotes coincide with the diagonals of
the rectangle with dimensions 2a and 2b, centered at (h, k). This provides you with a
quick means of sketching the asymptotes, which in turn aids in sketching the
hyperbola.
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wa_): EXAMPLE 7 Using Asymptotes to Sketch a Hyperbola

TECHNOLOGY Youcanusea
graphing utility to verify the graph
obtained in Example 7 by solving the
original equation for y and graphing
the following equations.

¥y, = JV4x2 — 16

¥, = —JV4x? — 16

Sketch the graph of the hyperbola whose equation is 4x2 — y2 = 16,

Solution Begin by rewriting the equation in standard form.

x2 y2

4 16

1

The transverse axis is horizontal and the vertices occur at (—2, 0) and (2, 0). The ends
of the conjugate axis occur at (0, —4) and (0, 4). Using these four points, you can
sketch the rectangle shown in Figure 10.16(a). By drawing the asymptotes through the
corners of this rectangle, you can complete the sketch as shown in Figure 10.16(b).

y y
[}
|
6 "
0,4
E 3 ?
(=2,0) 1 L2, 0)
-6 —4 4 -6
e
©0,-4
_6 -4
(@ (b)
Figure 10.16 E———

Definition of Eccentricity of a Hyperbola

The eccentricity e of a hyperbola is given by the ratio

c
e = —,
a

As with an ellipse, the eccentricity of a hyperbola is e = ¢/a. Because ¢ > a for
hyperbolas, it follows that e > 1 for hyperbolas. If the eccentricity is large, the
branches of the hyperbola are nearly flat. If the eccentricity is close to 1, the branches
of the hyperbola are more pointed, as shown in Figure 10.17.

y y
Eccentricity Eccentricity
is large. is close to 1.
Vertex | ' |1 [ Vertex Focus Focus
- ——|- Vertex Vertex -
Focus Ffocus iy =
— . — - = ep— bl e - X
1 . 5
e=Et y i b— e |
a b ' e=C a )
e —J ~a )
4

Figure 10.17
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CAROLINE HERSCHEL (1750-1848)

The first woman to be credited with detecting
a new comet was the English astronomer
Caroline Herschel. During her life,

Caroline Herschel discovered a total of eight
new comets.
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The following application was developed during World War 11. It shows how the
properties of hyperbolas can be used in radar and other detection systems.

EXAMPLE 8 A Hyperbolic Detection System

Two microphones, 1 mile apart, record an explosion. Microphone A receives the
sound 2 seconds before microphone B. Where was the explosion?

Solution Assuming that sound travels at 1100 feet per second, you know that the
explosion took place 2200 feet farther from B than from A, as shown in Figure 10.18.
The locus of all points that are 2200 feet closer to A than to B is one branch of the
hyperbola (x2/a?) — (y2/b?) = 1, where

5280 ft

1 mile
== == = 2640 feet

c

and

_ 2200 ft

a = 1100 feet.

Because ¢? = a2 + b?, it follows that
b2 — 02 . a2

5,759,600

and you can conclude that the explosion occurred somewhere on the right branch of

the hyperbola given by
x? y2

1210000 5759600 R

In Example 8, you were able to determine only the hyperbola on which the
explosion occurred, but not the exact location of the explosion. If, however, you had
received the sound at a third position C, then two other hyperbolas would be
determined. The exact location of the explosion would be the point at which these
three hyperbolas intersect.

Another interesting application of conics involves the orbits of comets in our
solar system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits,
295 have parabolic orbits, and 70 have hyperbolic orbits. The center of the sun is a
focus of each orbit, and each orbit has a vertex at the point at which the comet is
closest to the sun. Undoubtedly, many comets with parabolic or hyperbolic orbits have
not been identified—such comets pass through our solar system only once. Only
comets with elliptical orbits such as Halley’s comet remain in our solar system.

The type of orbit for a comet can be determined as follows.

1. Ellipse: v < V2GM/p
2. Parabola: v = 2GM/p
3. Hyperbola: v > J2GM/[p
In these three formulas, p is the distance between one vertex and one focus of the
comet’s orbit (in meters), v is the velocity of the comet at the vertex (in meters per

second), M =~ 1.989 x 10% kilograms is the mass of the sun, and G = 6.67 x 1078
cubic meters per kilogram-second squared is the gravitational constant.
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 1-8, match the equation with its graph. [The PF’ In Exercises 17-20, find the vertex, focus, and directrix of the

graphs are labeled (a), (b), (c), (d), (e), (f), (g), and (h).]

(b) y
4=
2 =i
_C | e - X
2 4
-4
() (d) y

(@ y (h) y

1. y2 =4x 2. x2 = 8y
3. (x+32=-2y-2) 4 l-t'_;ﬁ”—’.ll U:U?:I
5-)632"‘}}72:1 6.%4—%:1
7,%2_%2:1 8.(,1-—92'}2_%:I

In Exercises 9-16, find the vertex, focus, and directrix of the
parabola, and sketch its graph.
9. y2 = —6x

11, x+3)+(y —2)2 =

13. y2—4y —4x=0

15. 2+ 4x+ 4y —4=0

10. x>+ 8y =0

12. (x— 1>+ 8(y +2) =0
14. y2+ 6y + 8x + 25 = 0
16. y2+ 4y +8x—12=0

parabola. Then use a graphing utility to graph the parabola.

18. y = —4(x2 — 8x + 6)
20. x2-2x+8 +9=0

17. y2+x+y=0
19. y2 — dx — 4 =0

In Exercises 21-28, find an equation of the parabola.

21. Vertex: (3,2) 22. Vertex: (—1,2)

Focus: (1, 2) Focus: (—1,0)
23. Vertex: (0, 4) 24, Focus: (2, 2)
Directrix: y = —2 Directrix: x = —2
25. y 26. >
(0,4) " (2.4)
3
2

27. Axis is parallel to y-axis; graph passes through (0, 3), (3, 4),
and (4, 11).

28. Directrix: y = —2; endpoints of latus rectum are (0, 2) and
(8,2).
In Exercises 29-34, find the center, foci, vertices, and eccentric-
ity of the ellipse, and sketch its graph.
29, x2 4+ 4y2 =4
- 2 —_ 2
a B G=sr

30. 5x2 + 7y2 =170

9 25
(v + 4)?
2 4 T AT
32, (x+ 22+ 14 1

33. 9% + 442 4+ 36x — 24y + 36 =0
34. 16x% + 25y2 — 64x + 150y + 279 = 0

H" In Exercises 35-38, find the center, foci, and vertices of the

ellipse. Use a graphing utility to graph the ellipse.

35. 12x2 + 20y2 — 12x + 40y — 37 =0
36. 36x2 + 9y2 + 48x — 36y + 43 =0
37. x2+ 292 = 3x + 4y + 025 =0
38. 2x2 + y2 4+ 48x — 64y +3.12=0

In Exercises 3944, find an equation of the ellipse.

39. Center: (0, 0)
Focus: (2, 0)
Vertex: (3, 0)

41. Vertices: (3, 1), (3, 9)
Minor axis length: 6

40. Vertices: (0, 2), (4, 2)

Eccentricity: %

42, Foci: (0, +£5)
Major axis length: 14



43, Center: (0, 0)

Major axis: horizontal

44. Center: (1, 2)
Major axis: vertical

Points on the ellipse:

(3,1),(4,0)

Points on the ellipse:
(1,6),3,2)

In Exercises 45-52, find the center, foci, and vertices of the
hyperbola, and sketch its graph using asymptotes as an aid.

2 21
2 X LA
45. 2~ =1 46. =% =1
G-12 (y+2p G+ 12 (-4
47. =, : 1 48. > o = 1

49, 9x2 — y2 —36x — 6y + 18 =0
50, y2 — 9x% + 36x — 72 = 0

51. x2 —9y2 4+ 2x — 54y — 80 =0
52. 9x2 —4y? + 54x + 8y + 78 = 0

lﬂ!“' In Exercises 53-56, find the center, foci, and vertices of the

hyperbola. Use a graphing utility to graph the hyperbola and its
asymptotes.

53. 9y2 — x>+ 2x + 54y + 62 =0

54, Ox2 — y2 + 54x + 10y + 55 =0

55, 3x2 —2y? —6x— 12y — 27 =0

56. 3y2 — x>+ 6x — 12y =0

In Exercises 57-64, find an equation of the hyperbola.

57. Vertices: (+1, 0)
Asymptotes: y = +3x

58. Vertices: (0, =3)
Asymptotes: y = £3x

59. Vertices: (2, +3) 60. Vertices: (2, £3)
Point on graph: (0, 5) Foci: (2, £5)

61. Center: (0, 0) 62. Center: (0,0)
Vertex: (0, 2) Vertex: (3, 0)
Focus: (0, 4) Focus: (5, 0)

63. Vertices: (0, 2), (6, 2) 64. Tocus: (10, 0}

Asymptotes: y = %x Asymptotes: y = i%x

y=4—1%

In Exercises 65 and 66, find equations for (a) the tangent lines
and (b) the normal lines to the hyperbola for the given value of
x.

2

65.%*)}2:1, x=6

2 2!
6. %~ =1 x=4

In Exercises 67-76, classify the graph of the equation as a
circle, a parabola, an ellipse, or a hyperbola.

67. x2 4+ 4y?2 —6x + 16y +21 =0

68. 4x> —y2 —4x—-3=0

69. y2—4y —4x =0

70. 25x> — 10x — 200y — 119 =0
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71. 4x2 4+ 4y2 — 16y +15=0

72, y2—4y=x+5

73. 9x2 4+ 9y2 — 36x + 6y + 34 =0
74. 2x(x — y) = y(3 —y — 2x)

75. 3 — 12 = 6 + 2(y + 1)

76. 9(x + 3)2 = 36 — 4(y — 2)

Writing About Concepts

77. (a) Give the definition of a parabola.

(b) Give the standard forms of a parabola with vertex at
(h, k).

(c) In your own words, state the reflective property of a
parabola.

78. (a) Give the definition of an ellipse.

(b) ?ive) the standard forms of an ellipse with center at
h, k).

79. (a) Give the definition of a hyperbola.

(b) E}ive the standard forms of a hyperbola with center at
h, k).

(c) Write equations for the asymptotes of a hyperbola.

80. Define the eccentricity of an ellipse. In your own words,
describe how changes in the eccentricity affect the ellipse.

81. Solar Collector A solar collector for heating water is
constructed with a sheet of stainless steel that is formed into
the shape of a parabola (see figure). The water will flow
through a pipe that is located at the focus of the parabola. At
what distance from the vertex is the pipe?

Not drawi to scale

Figure for 81 Figure for 82

82. Beam Deflection A simply supported beam that is 16 meters
long has a load concentrated at the center (see figure). The
deflection of the beam at its center is 3 centimeters. Assume
that the shape of the deflected beam is parabolic.

(a) Find an equation of the parabola. (Assume that the origin is
at the center of the beam.)

(b) How far from the center of the beam is the deflection
1 centimeter?

83. Find an equation of the tangent line to the parabola y = ax? at
x = x,. Prove that the x-intercept of this tangent line is

(072, 0).
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4
2 =2 =3
t=1 "
(=0 € —b 4+
_1 pr=-2 4 6
= s
—4

Parametric equations:

x=12—4andy=%,—2SIS3

Figure 10.20

-

-4

Parametric equations:
x=42 —4andy=r-1<r<

[N 219

Figure 10.21

When sketching (by hand) a curve represented by a set of parametric equations,
you can plot points in the xy-plane. Each set of coordinates (x, y) is determined from
a value chosen for the parameter r. By plotting the resulting points in order of
increasing values of ¢, the curve is traced out in a specific direction. This is called the
orientation of the curve.

EXAMPLE | Sketching a Curve
I
Sketch the curve described by the parametric equations

t
x=1r—4 and Y=o -2<t<3.

Solution  For values of  on the given interval, the parametric equations yield the
points (x, y) shown in the table.

=
[}
|
w
|
N
|
w
<o
NIk W

By plotting these points in order of increasing ¢ and using the continuity of f and g,
you obtain the curve C shown in Figure 10.20. Note that the arrows on the curve
indicate its orientation as ¢ increases from —2 to 3. —_

NOTE  From the Vertical Line Test, you can see that the graph shown in Figure 10.20 does not
define y as a function of x. This points out one benefit of parametric equations—they can be
used to represent graphs that are more general than graphs of functions.

It often happens that two different sets of parametric equations have the same

graph. For example, the set of parametric equations
) 3

x=4r"—4 and y=1 -1 StSE
has the same graph as the set given in Example 1. However, comparing the values of
¢ in Figures 10.20 and 10.21, you can see that the second graph is traced out more
rapidly (considering ¢ as time) than the first graph. So, in applications, different
parametric representations can be used to represent various speeds at which objects
travel along a given path.

TECHNOLOGY Most graphing utilities have a parametric graphing mode. If
you have access to such a utility, use it to confirm the graphs shown in Figures 10.20
and 10.21. Does the curve given by

x=4 -8 and y=1-1 —-i<t<2

represent the same graph as that shown in Figures 10.20 and 10.21? What do you
notice about the orientation of this curve?



b
-2 -1

-3+ t=-0.75

Parametric equations:

1 P |

Vir1 T

x=

—2 =

-3

Rectangular equation:
y=1- x2, x>0

Figure 10.22
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Eliminating the Parameter

Finding a rectangular equation that represents the graph of a set of parametric
equations is called eliminating the parameter. For instance, you can eliminate the
parameter from the set of parametric equations in Example 1 as follows.

Parametric Solve for ¢t in Substitute into Rectangular

equations one equation. second equation. equation
x=12—-4 t =2y x=(2y)2 -4 x=4y?—4
y=1/2

Once you have eliminated the parameter, you can recognize that the equation
x = 4y? — 4 represents a parabola with a horizontal axis and vertex at (—4, 0), as
shown in Figure 10.20.

The range of x and y implied by the parametric equations may be altered by the
change to rectangular form. In such instances the domain of the rectangular equation
must be adjusted so that its graph matches the graph of the parametric equations. Such
a situation is demonstrated in the next example.

EXAMPLE 2 Adjusting the Domain After Eliminating the Parameter

Sketch the curve represented by the equations

> —1

1 t
x=———= and =—0
i+l R
by eliminating the parameter and adjusting the domain of the resulting rectangular

equation.

Solution Begin by solving one of the parametric equations for ¢. For instance, you
can solve the first equation for ¢ as follows.

A= # Parametric equation for x
t+ 1
%2 = L Square each side.
t+ 1
1
t+ 1= F
tzl—lzl_xz Solve for ¢.
x? X2 )

Now, substituting into the parametric equation for y produces

t

= — Parametric equation for
Y t+1 . ’
] v
S Substitute (1 — x?)/x? for ¢.
YT - A+ 1
y=1-x2 Simplify.

The rectangular equation, y = 1 — x2, is defined for all values of x, but from the
parametric equation for x you can see that the curve is defined only when ¢ > —1.
This implies that you should restrict the domain of x to positive values, as shown in

Figure 10.22. ey
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lg=Tl
Lo=7
O=m 0=0
i - L X
—4 4
=3
To="

Parametric equations:
x=3cos 8, y=4sin0
Rectangular equation:

Figure 10.23

It is not necessary for the parameter in a set of parametric equations to represent
time. The next example uses an angle as the parameter.

P EXAMPLE 3 Using Trigonometry to Eliminate a Parameter
|

Sketch the curve represented by
x=3cosf and y=4sinf, 0<0<27

by eliminating the parameter and finding the corresponding rectangular equation.

Solution Begin by solving for cos 6 and sin § in the given equations.

X 4
cos == and sin @ = 2 Solve for cos 8 and sin 6.

3 4

Next, make use of the identity sin? 8 + cos?# = 1 to form an equation involving only
x and y.

cos? @ + sin2f =1 Trigonometric identity
2 2
X Y
-} +1=5) =1 Substitute.
<3> <4>
i + y2 1 Rect it ti
—+ == ectangular equation
9 16 e

From this rectangular equation you can see that the graph is an ellipse centered at
(0, 0), with vertices at (0, 4) and (0, —4) and minor axis of length 2b = 6, as shown
in Figure 10.23. Note that the ellipse is traced out counterclockwise as 6 varies from
0to 2. ——

Using the technique shown in Example 3, you can conclude that the graph of the
parametric equations

x=h+acosf and y=k+bsing, 0<6<27
is the ellipse (traced counterclockwise) given by

—n? =k _
a? b?

1.

The graph of the parametric equations
x=h+asinf and y=k+bcosh, 0<60<27w
is also the ellipse (traced clockwise) given by

Gom -k
a’® b?

1.

Use a graphing utility in parametric mode to graph several ellipses.

In Examples 2 and 3, it is important to realize that eliminating the parameter is
primarily an aid to curve sketching. If the parametric equations represent the path of
a moving object, the graph alone is not sufficient to describe the object’s motion. You
still need the parametric equations to tell you the position, direction, and speed at a
given time.
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Finding Parametric Equations

The first three examples in this section illustrate techniques for sketching the graph
represented by a set of parametric equations. You will now investigate the reverse
problem. How can you determine a set of parametric equations for a given graph or a
given physical description? From the discussion following Example 1, you know that
such a representation is not unique. This is demonstrated further in the following
example, which finds two different parametric representations for a given graph.

EXAMPLE 4 Finding Parametric Equations for a Given Graph

Find a set of parametric equations to represent the graph of y = 1 — x2, using each of
the following parameters.

ar=x b. The slope m = % at the point (x, y)

Solution
a. Letting x = ¢ produces the parametric equations
x=¢t and y=1—-x2=1-1¢

b. To write x and y in terms of the parameter m, you can proceed as follows.

dy
m=-—= =12
dx
l, X = AL Solve for
== 0Olve 101 X.
2

This produces a parametric equation for x. To obtain a parametric equation for y,
substitute —m/2 for x in the original equation.

=1-x2 Write original rectangular equation.
y g q
m\2 )
y=1-— ) Substitute —m/2 for .x.
m2
=1-— Simplify,
y 4 plity

So, the parametric equations are

2

m m
Rectangular equation: y =1 —x? x=——7 and y=1——.
Parametric equations: 2 4
2 ) . . . )
x=-2y=1- % In Figure 10.24, note that the resulting curve has a right-to-left orientation as
determined by the direction of increasing values of slope m. For part (), the curve
y g p P
Figure 10.24 would have the opposite orientation. ——

TECHNOLOGY To be efficient at using a graphing utility, it is important that
you develop skill in representing a graph by a set of parametric equations. The
reason for this is that many graphing utilities have only three graphing modes—(1)
functions, (2) parametric equations, and (3) polar equations. Most graphing utilities
are not programmed to graph a general equation. For instance, suppose you want to
graph the hyperbola x? — y? = 1. To graph the hyperbola in function mode, you
need two equations: y = /x* — 1 and y = — /x* — 1. In parametric mode, you
can represent the graph by x = sec rand y = tan t.
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CycLoins

Galileo first called attention to the cycloid,
once recommending that it be used for the
arches of bridges. Pascal once spent 8 days
attempting to solve many of the problems of
cycloids, such as finding the area under one
arch, and the volume of the solid of revolu-
tion formed by revolving the curve about a
line. The cycloid has so many interesting
properties and has caused so many quarrels
among mathematicians that it has been called
“the Helen of geometry”and“the apple of
discord”

FOR FURTHER INFORMATION For
more information on cycloids, see the
article “The Geometry of Rolling
Curves” by John Bloom and Lee Whitt
in The American Mathematical Monthly.
To view this article, go to the website
www.matharticles.com.

TECHNOLOGY  Some graphing

utilities allow you to simulate the
motion of an object that is moving in
the plane or in space. If you have
access to such a utility, use it to trace
out the path of the cycloid shown in
Figure 10.25.

EXAMPLE 5 Parametric Equations for a Cycloid

Determine the curve traced by a point P on the circumference of a circle of radius «
rolling along a straight line in a plane. Such a curve is called a cycloid.

Solution  Let the parameter @ be the measure of the circle’s rotation, and let the point
P = (x, y) begin at the origin. When 6 = 0, P is at the origin. When 6 = 7, P is at a
maximum point (7a, 2a). When 8 = 24, P is back on the x-axis at (27ra, 0). From
Figure 10.25, you can see that ZAPC = 180° — 6. So,

sin 0 = sin(180° — 0) = sin(LAPC) = éag = BTD

AP
cos 0 = —cos(180° — ) = —cos(LAPC) = .

which implies that
AP = —acos ® and BD = g sin 6.

Because the circle rolls along the x-axis, you know that OD = PD = a#. Furthermore,
because BA = DC = a, you have

x=0D—BD =af —asin 0
y=BA+ AP =a — acos 6.

So, the parametric equations are

x=a(@—sing) and y=a(l — cos 0).

Cycloid:
x=a(f-sin 6)
¥ y=a(l —cos 6)
| P&y (ra, 2a) (Bra, 2a)
2a i \ =

0 @2ra, 0) {4ma. 0)
Figure 10.25

The cycloid in Figure 10.25 has sharp corners at the values x = 2nma. Notice
that the derivatives x(#) and y’(6) are both zero at the points for which 6 = 2nr.

x(0) = a(f — sin 6) ¥(0) = a(1 — cos 6)
x(0) =a— acos 6 y(0) = asin 0
x'2nm =0 y'(2nm) =0

Between these points, the cycloid is called smooth.

Definition of a Smooth Curve

A curve C represented by x = f(r) and y = g(#) on an interval / is called smooth
if " and g’ are continuous on I and not simultaneously 0, except possibly at the
endpoints of /. The curve C is called piecewise smooth if it is smooth on each
subinterval of some partition of I.




The time required to complete a full swing of
the pendulum when starting from point C is
only approximately the same as when starting
from point 4.

Figure 10.26

The Granger Collection

James BERNOULLI (1654—-1705)

James Bernoulli, also called Jacques, was the
older brother of John. He was one of several
accomplished mathematicians of the Swiss
Bernoulli family. James’s mathematical accom-
plishments have given him a prominent place
in the early development of calculus.
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The Tautochrone and Brachistochrone Problems

The type of curve described in Example 5 is related to one of the most famous pairs
of problems in the history of calculus. The first problem (called the tautochrone
problem) began with Galileo’s discovery that the time required to complete a full
swing of a given pendulum is approximately the same whether it makes a large
movement at high speed or a small movement at lower speed (see Figure 10.26). Late
in his life, Galileo (1564—1642) realized that he could use this principle to construct
a clock. However, he was not able to conquer the mechanics of actual construction.
Christian Huygens (1629-1695) was the first to design and construct a working
model. In his work with pendulums, Huygens realized that a pendulum does not take
exactly the same time to complete swings of varying lengths. (This doesn’t affect a
pendulum clock, because the length of the circular arc is kept constant
by giving the pendulum a slight boost each time it passes its lowest point.) But, in
studying the problem, Huygens discovered that a ball rolling back and forth on an
inverted cycloid does complete each cycle in exactly the same time.

B

An inverted cycloid is the path down which a ball will roll in the shortest time.
Figure 10.27

The second problem, which was posed by John Bernoulli in 1696, is called the
brachistochrone problem—in Greek, brachys means short and chronos means time.
The problem was to determine the path down which a particle will slide from point A
to point B in the shortest time. Several mathematicians took up the challenge, and the
following year the problem was solved by Newton, Leibniz, L'Hopital, John
Bernoulli, and James Bernoulli. As it turns out, the solution is not a straight line from
A to B, but an inverted cycloid passing through the points A and B, as shown in Figure
10.27. The amazing part of the solution is that a particle starting at rest at any other
point C of the cycloid between A and B will take exactly the same time to reach B, as
shown in Figure 10.28.

A ball starting at point C takes the same time to reach point B as one that starts at point 4,
Figure 10.28

FOR FURTHER INFORMATION To see a proof of the famous brachistochrone problem, see the
article “A New Minimization Proof for the Brachistochrone” by Gary Lawlor in The American
Mathematical Monthly. To view this article, go to the website www.matharticles.com.
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Exercises for Section
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

1. Consider the parametric equations x = /fandy =1 — ¢.
(a) Complete the table.

t |0 1]2]3]|4

X

y

(b) Plot the points (x, y) generated in the table, and sketch a
graph of the parametric equations. Indicate the orientation
of the graph.

(c) Use a graphing utility to confirm your graph in part (b).

(d) Find the rectangular equation by eliminating the parameter,
and sketch its graph. Compare the graph in part (b) with the
graph of the rectangular equation.

2. Consider the parametric equations x = 4 cos? #and y = 2 sin 6.
(a) Complete the table.

K
0|7 |-

)3
o
N
oIy

X

y

(b) Plot the points (x, y} generated in the table, and sketch a
graph of the parametric equations. Indicate the orientation
of the graph.

(c) Use a graphing utility to confirm your graph in part (b).
(d) Find the rectangular equation by eliminating the parameter,

and sketch its graph. Compare the graph in part (b) with the
graph of the rectangular equation.

(e) If values of 6 were selected from the interval [ /2, 37/2]
for the table in part (a), would the graph in part (b) be
different? Explain.

In Exercises 3-20, sketch the curve represented by the
parametric equations (indicate the orientation of the curve),
and write the corresponding rectangular equation by
eliminating the parameter.

Jox=3r—-1, y=2t+1 4. x=3—-2t, y=2+ 3¢
S5.x=t+1, y=1¢ 6. x =2, y=1t*+1
2

7. x =13 y=3 8 x=2+¢ y=122—1¢
9, x = 1, y=t—2 10. x = &1, y=3—1¢

1M ox=¢—1, y=t—_’7 12.x=1+%, y=t—1
13. x=121, y=|t—2| 4. x=|t—1], y=t+2
15. x=¢!, y=¢e*+1 16. x=¢7", y=¢e*—1

17. x =sech, y=cosf, 0<O0<w/2, w/2<0<m

18. x = tan?6, y = sec?9

19. x =3cosfh, y=3sinf 20. x=2cosf, y=6sinb

de‘ In Exercises 21-32, use a graphing utility to graph the curve

%‘2

represented by the parametric equations (indicate the orienta-
tion of the curve). Eliminate the parameter and write the
corresponding rectangular equation.

21. x =45in260,y =2cos20 22. x =cos 6,y = 2sin 20

23. x=4+ 2cos 0 24, x =4+ 2cos 6
y=—1+sin6 y=—1+2sin6

25. x =4+ 2cos 8 26. x = sec 0
y=—1+4sin4d y = tan 6

27. x=4secHd, y=3tan6 28, x = cos*H, y =sin30

29, x =1, y=3Int 30. x=1In2t, y=1*

3l.x=¢", y=¢e R2.x=¢e¥ y=¢

Comparing Plane Curves In Exercises 33-36, determine any
differences between the curves of the parametric equations. Are
the graphs the same? Are the orientations the same? Are the
curves smooth?

33, (a) x =1t (b) x =cos @
y=2t+1 y=2cos 8+ 1
) x=e"' dx=¢
y=2e"+1 y=2 +1
34. (a) x = 2cos § (b) x= V42— 1/]¢
y=2sin@ y=1/t
© x =i @ x=-VE=e¥

y=\/4——t y=é€

35. (a) x = cos 0 (b) x = cos(—6)
y = 2sin? 6 y = 2 sin¥(— 6)
O<f<m O<fO<m
36. @ x=t+1,y=17 M x=—-t+1,y= (=03
37. Conjecture

(a) Use a graphing utility to graph the curves represented by
the two sets of parametric equations.
x = 4cost x = 4 cos(—1)

y = 3sint y = 3sin(—1)

(b) Describe the change in the graph when the sign of the
parameter is changed.

(c) Make a conjecture about the change in the graph of
parametric equations when the sign of the parameter is
changed.

(d) Test your conjecture with another set of parametric
equations.

38. Writing Review Exercises 33-36 and write a short paragraph

describing how the graphs of curves represented by different
sets of parametric equations can differ even though eliminating
the parameter from each yields the same rectangular equation.
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In Exercises 39-42, eliminate the parameter and obtain the
standard form of the rectangular equation.

Writing About Concepts (continued)

66. Match each set of parametric equations with the correct
graph. [The graphs are labeled (a), (b), (¢), (d), (e), and (f).]
x=x +tln—x) y=y 10—y Explain your reasoning.

40. Circle: x=h +rcosf, y=k+ rsinf

41. Ellipse: x =h +acosd, y=k+ bsin@

42. Hyperbola: x =h + asec§, y =4k + btan 6

39. Line through (x, y,) and (x,, y,):

(b)

In Exercises 43-50, use the results of Exercises 39-42 to find a
set of parametric equations for the line or conic.

43. Line: passes through (0, 0) and (5, —2)

44. Line: passes through (1, 4) and (5, —2)

45. Circle: center: (2, 1); radius: 4

46. Circle: center: (—3, 1); radius: 3

47. Ellipse: vertices: (25, 0); foci: (x4, 0)

48. Ellipse: vertices: (4, 7), (4, —3); foci: (4, 5), (4, — 1)
49. Hyperbola: vertices: (£4, 0); foci: (£5, 0)

50. Hyperbola: vertices: (0, +1); foci: (0, +2)

© y (d) ¥

In Exercises 51-54, find two different sets of parametric
equations for the rectangular equation.

Ly=3x-—-2 .y =
51. y = 3x 52yx

53.y=2x3 54, y=x*

PP' In Exercises 55—62, use a graphing utility to graph the curve

represented by the parametric equations, Indicate the direction Gx=2-1, y=t+2
of the curve. Identify any points at which the curve is not . . ' .
smooth (i) x=sin20—1, y=sinf+2

(iii) Lissajous curve: x = 4cos 6, y = 2sin 20
55, Cycloid: x = 2(8 — sin 6), y = 2(1 — cos 6)

6. Cycloid: x = 6 + sin 6, =1- . .
= EIOTFE=H SESinG 3y G0 : (v) Involute of circle: x = cos 6 + 8 sin 6,
57. Prolate cycloid: x = 6 —3sin 6, y=1—35cos 80 y =sin 6 — B cos 6

58. Prolate cycloid: x = 26 — 4sin 6, y =2 — 4cos 0 (vi) Serpentine curve: x = cot §, y = 4 sin fcos 6
59. Hypocycloid: x = 3 cos®8, y = 3sin®6

(iv) Evolute of ellipse: x = cos* 6, y = 2sin® 0

60. Curtate cycloid: x = 26 — sin§, y =2 — cos 6
61. Witch of Agnesi: x = 2cot §, y = 2sin*0

3t 3
1+ 7 1+7

y
Writing About Concepts | 1

63. State the definition of a plane curve given by parametric
equations.

67. Curtate Cycloid A wheel of radius a rolls along a line with-
out slipping. The curve traced by a point P that is b units from
the center (b < a) is called a curtate cycloid (see figure). Use
the angle 6 to find a set of parametric equations for this curve.

62. Folium of Descartes: x =

lp —» (@aa+ b)

64. Explain the process of sketching a plane curve given by
parametric equations. What is meant by the orientation of

the curve? N :
(0, a—b)

65. State the definition of a smooth curve.

Figure for 67 Figure for 68
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68. Epicycloid A circle of radius 1 rolls around the outside of a
circle of radius 2 without slipping. The curve traced by a point
on the circumference of the smaller circle is called an epicy-
cloid (see figure on previous page). Use the angle 6 to find a set
of parametric equations for this curve.

True or False? In Exercises 69 and 70, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

69. The graph of the parametric equations x = 2 and y = 2 is the
liney = x.

70. If y is a function of ¢ and x is a function of 7, then y is a
function of x.

Projectile Motion  In Exercises 71 and 72, consider a projectile
launched at a height & feet above the ground and at an angle
0 with the horizontal. If the initial velocity is v, feet per second,
the path of the projectile is modeled by the parametric
equations x = (v, cos @)t and y = h + (v, sin 0)¢ — 16¢%

’UF’ 71. The center field fence in a ballpark is 10 feet high and 400 feet

from home plate. The ball is hit 3 feet above the ground. It
leaves the bat at an angle of 6 degrees with the
horizontal at a speed of 100 miles per hour (see figure).

__#ii o 1 &

e

(a) Write a set of parametric equations for the path of the ball.

(b) Use a graphing utility to graph the path of the ball when
0 = 15°. Is the hit a home run?

(c) Use a graphing utility to graph the path of the ball when
0 = 23°. Is the hit a home run?

(d) Find the minimum angle at which the ball must leave the
bat in order for the hit to be a home run.

fjf" 72. A rectangular equation for the path of a projectile is

y =35+ x— 0.005x%

(a) Eliminate the parameter ¢ from the position function for the
motion of a projectile to show that the rectangular equation is

16 sec29
-
0

(b) Use the result of part (a) to find A, vy, and 6. Find the
parametric equations of the path.

y = X2+ (tan @) x + h.

(¢) Use a graphing utility to graph the rectangular equation for
the path of the projectile. Confirm your answer in part (b) by
sketching the curve represented by the parametric equations.

(d) Use a graphing utility to approximate the maximum height
of the projectile and its range.

Conics, Parametric Equations, and Polar Coordinates

Section Project: Cycloids

In Greek, the word cycloid means wheel, the word hypocycloid
means under the wheel, and the word epicycloid means upon the
wheel. Match the hypocycloid or epicycloid with its graph. [The
graphs are labeled (a), (b), (¢), (d), (e), and (f).]

Hypocycloid, H(A, B)

Path traced by a fixed point on a circle of radius B as it rolls around
the inside of a circle of radius A

- B
x=(A—B)cosz+Bcos<AB )t

A—B
y=(A—B)sint—Bsin< B >t

Epicycloid, E(A, B)

Path traced by a fixed point on a circle of radius B as it rolls around
the outside of a circle of radius A

+
x=(A+ B)cost — Bcos(A B B)t
+
y=(A+ B)sint — Bsin(A B)t
I. H@S,3) II. E(8,3)
IIL. H(,7) 1V. E(24, 3)
V. H24,7) VI. EQ4,7)
@) y ®) y
— -

(©) J (d

Exercises based on “Mathematical Discovery via Computer
Graphics: Hypocycloids and Epicycloids” by Florence S. Gordon
and Sheldon P. Gordon, College Mathematics Journal, November
1984, p.441. Used by permission of the authors.
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x=24/21
y=—1612 + 24+/21

20~

10 2 30
At time 1, the angle of elevation of the
projectile is 6, the slope of the tangent

line at that point.
Figure 10.29

(fe + An), gt +AN)A

Ay
- (1), ()

The slope of the secant line through

the points (f(1), g(6)) and (f(t + A¥),
gt + Ag)isAy/Ax.

Figure 10.30
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Parametric Equations and Calculus

¢ Find the slope of a tangent line to a curve given by a set of parametric equations.
» Find the arc length of a curve given by a set of parametric equations.
¢ Find the area of a surface of revolution (parametric form).

Slope and Tangent Lines

Now that you can represent a graph in the plane by a set of parametric equations, it is
natural to ask how to use calculus to study plane curves. To begin, let’s take another
look at the projectile represented by the parametric equations

x=24/2t and y= —1612+ 242t

as shown in Figure 10.29. From Section 10.2, you know that these equations enable
you to locate the position of the projectile at a given time. You also know that the
object is initially projected at an angle of 45°. But how can you find the angle 6 rep-
resenting the object’s direction at some other time ¢? The following theorem answers
this question by giving a formula for the slope of the tangent line as a function of ¢.

THEOREM 10.7 Parametric Form of the Derivative

If a smooth curve C is given by the equations x = f(¢) and y = g(#), then the
slope of C at (x, y) is
dy _dy/dt dx

dr drjar @t %

Proof In Figure 10.30, consider At > 0 and let
Ay = gt + A1) — g(r) and Ax = f(t + A — f(2).
Because Ax — 0 as At — 0, you can write
o= dm
- i, a0

Dividing both the numerator and denominator by A, you can use the differentiability
of f and g to conclude that

dy _ . Lele+ A0 — g(]/Ar
dx  aso[f(e + At) —f(t)]/At
g 84D - g(0)

1

_ At—0 At
L fl+ A) — f()
/L A T
_g®
£
_ dy/dt

a dX/dt P —
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STUDY TIP The curve traced out in

Example 1 is a circle. Use the formula
Z—i = —tant

to find the slopes at the points (1, 0) and

(0, 1).

x=r

y= L@

The graph is concave upward at (2, 3), when
t=4.
Figure 10.31

Conics, Parametric Equations, and Polar Coordinates

EXAMPLE | Differentiation and Parametric Form

Find dy/dx for the curve given by x = sin t and y = cos .

Solution

dy _dy/dt _ —sint
dx dx/dt cost

= —tant

Because dy/dx is a function of ¢, you can use Theorem 10.7 repeatedly to find
higher-order derivatives. For instance,

‘<

|

Second derivative

&
N

]

a2 _i[@]_dt dx
“dxldx|  dx/dt

i[d_zy

&Py d [dzy] _dildx®

%3 dxldx?]| dx/dt

Third derivative

.

EXAMPLE 2 Finding Slope and Concavity

For the curve given by
x =/t

find the slope and concavity at the point (2, 3).

and y=i(t2—4), t>0

Solution Because

dy _dy/dt __(1/2) _
dx dx/dt (1/2)r1/2

Parametric form of first derivative
you can find the second derivative to be

Parametric form of second

d dr s
&y @Vl _ a1 e

= = - = 3 derivative
dx? dx/dt dx/dt  (1/2)¢ /2
At (x, y) = (2, 3), it follows that ¢ = 4, and the slope is
dy _ 32 —
B (4)%2 = 8.
Moreover, when ¢ = 4, the second derivative is
d?y
_— = = 1
s 3(4) 2>0

and you can conclude that the graph is concave upward at (2, 3), as shown in
Figure 10.31.

Because the parametric equations x = f(¢) and y = g(¢) need not define y as a
function of x, it is possible for a plane curve to loop around and cross itself. At such
points the curve may have more than one tangent line, as shown in the next example.
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x=2t— msint EXAMPLE 3 A Curve with Two Tangent Lines at a Point

y=2-Tcost

Y Tangent line (¢ =7/2)

Tangent line (t =—x/2)
This prolate cycloid has two tangent lines at
the point (0, 2).
Figure 10.32

The prolate cycloid given by
=2t — Trsint and y=2— mcost
crosses itself at the point (0, 2), as shown in Figure 10.32. Find the equations of both
tangent lines at this point.
Solution Because x = 0 and y = 2 when 1 = /2, and

dy _dy/dt _ __wsint
dx dx/dt 2 — mwcost

you have dy/dx = — /2 when t = — /2 and dy/dx = /2 when t = /2. So, the
two tangent lines at (0, 2) are

™
y—2=—-\7x Tangent line when ¢ -z
2 2
v
y—2= (—2—> X. Tangent line when ¢ g
f— ==

If dy/dt = 0 and dx/dt #+ 0 when t = t,, the curve represented by x = f(f) and
y = g(r) has a horizontal tangent at (f(z,), g(¢,)). For instance, in Example 3, the
given curve has a horizontal tangent at the point (0, 2 — ) (when ¢ = 0). Similarly,
if dx/dt = 0 and dy/dt # 0 when t = t,, the curve represented by x = f(r) and
y = g(¢) has a vertical tangent at ( f(t,), g(to))-

Arc Length

You have seen how parametric equations can be used to describe the path of a particle
moving in the plane. You will now develop a formula for determining the distance
traveled by the particle along its path.

Recall from Section 7.4 that the formula for the arc length of a curve C given by
y = h(x) over the interval [xy, x,] is

S—J JT+ W] dx

f\/1+ dx

If C is represented by the parametric equations x = f(f) and y = g(t),a < t < b, and
if dx/dt = f(t) > 0, you can write

B / dy _ / dy/dt
= J 1 + dx = f 1+ d /dt
j \/ dx/de)? + (dy/di)? dx
dx/dt)2 ar !

SV

b
- f FOT s 0T de.
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NOTE When applying the arc length
formula to a curve, be sure that the curve
is traced out only once on the interval of
integration. For instance, the circle given
by x = cos t and y = sin ¢ is traced out
once on the interval 0 < ¢ < 277, but is
traced out twice on the interval
0<t<4m

ARCH OF A CycLOID

The arc length of an arch of a cycloid was
first calculated in 1658 by British architect
and mathematician Christopher Wren, famous
for rebuilding many buildings and churches in
London, including St. Paul’s Cathedral.

X =5cost—cos 5t
y=5sint—sin5¢

An epicycloid is traced by a point on the
smaller circle as it rolls around the larger
circle.

Figure 10.33

Conics, Parametric Equations, and Polar Coordinates

THEOREM 10.8 Arc Length in Parametric Form

If a smooth curve C is given by x = f(z) and y = g(¢) such that C does not
intersect itself on the interval a < r < b (except possibly at the endpoints), then
the arc length of C over the interval is given by

j,f‘Z d dzJ.\/[f

In the preceding section you saw that if a circle rolls along a line, a point on its
circumference will trace a path called a cycloid. If the circle rolls around the circum-
ference of another circle, the path of the point is an epicycloid. The next example
shows how to find the arc length of an epicycloid.

+ [ (1] d.

EXAMPLE 4 Finding Arc Length

A circle of radius 1 rolls around the circumference of a larger circle of radius 4, as
shown in Figure 10.33. The epicycloid traced by a point on the circumference of the
smaller circle is given by

x =5cost — cos 5t
and

y = 5sint — sin 5¢.
Find the distance traveled by the point in one complete trip about the larger circle.
Solution  Before applying Theorem 10.8, note in Figure 10.33 that the curve has
sharp points when ¢ = 0 and t = /2. Between these two points, dx/dt and dy/dt are
not simultaneously 0. So, the portion of the curve generated fromt = 0to ¢t = 7/2 is

smooth. To find the total distance traveled by the point, you can find the arc length of
that portion lying in the first quadrant and multiply by 4.

o[ S B

. f (=5sint + 5sin 5% + (Scost — 5 cos 5% dr
0

Parameltric form for arc length

ZZOJ V2 = 2sintsin 5t — 2 cos f cos 5t dt
0
/2
=20f V2 — 2cos 4t dt
0
Trigonometric identity

/2
= 20[ V4 sin? 2t dt
0

/2
= 40[ sin 2t dt
0

/2

. 20[005 ZI]
=40

0

For the epicycloid shown in Figure 10.33, an arc length of 40 seems about right

because the circumference of a circle of radius 6 is 27r = 127 = 37.7. e



0.5in.

0.001 in,

x=rcosf
y=rsinf

(€27)]

Figure 10.34

NOTE The graph of r = af1is called
the spiral of Archimedes. The graph of
r = 6/20007r (in Example 5) is of this
form.
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EXAMPLE 5 Length of a Recording Tape

A recording tape 0.001 inch thick is wound around a reel whose inner radius is 0.5
inch and whose outer radius is 2 inches, as shown in Figure 10.34. How much tape is
required to fill the reel?

Solution To create a model for this problem, assume that as the tape is wound
around the reel its distance r from the center increases linearly at a rate of 0.001 inch
per revolution, or

0 0
= (0.001)271_ = 50007 10007 < 6 < 40007

where 0 is measured in radians. You can determine the coordinates of the point (x, y)
corresponding to a given radius to be

x =rcos 0
and
y = rsin 0.

Substituting for r, you obtain the parametric equations

6 0 .
x = (200077) cos 0 and y = (20007_) sin 6.

You can use the arc 1ength formula to determine the total length of the tape to be
40007 -
B J;ooow
40007
+ + +
20007-rJ1 V(= 0sin 6 + cos 6) + (6 cos 6 + sin 6)* d6

0007
40007

1 )
=— J6r+1d
20007 J10000 0 0

40007

Integration tables
/ ’2 /02
( )[6 o 1+ ln‘ o+ 62+ 1 ‘] (Appendix B), Formula 26

2000 10007

=~ 11,781 inches
= 982 feet ———

FOR FURTHER INFORMATION For more information on the mathematics of recording tape,
see “Tape Counters” by Richard L. Roth in The American Mathematical Monthly. To view this
article, go to the website www.matharticles.com.

The length of the tape in Example 5 can be approximated by adding the circum-
ferences of circular pieces of tape. The smallest circle has a radius of 0.501 and the
largest has a radius of 2.

s = 27(0.501) + 27(0.502) + 27(0.503) + - - - + 277(2.000)

1500
= Y 27(0.5 + 0.001i)
=1

Il

27[1500(0.5) + 0.001(1500)(1501)/2]
11,786 inches

U
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34

This surface of revolution has a surface area
of 9ar.
Figure 10.35

Area of a Surface of Revolution

You can use the formula for the area of a surface of revolution in rectangular form to
develop a formula for surface area in parametric form.

THEOREM 10.9 Area of a Surface of Revolution

If a smooth curve C given by x = f(r) and y = g(¥) does not cross itself on an
interval @ < ¢t < b, then the area S of the surface of revolution formed by
revolving C about the coordinate axes is given by the following.

b 2 d
1. §= 27Tf glt) (%) + (d_i‘) dt Revolution about the x-axis: g(t) = 0

b dx\? dy\? , .
2. S =27 1@ 7 + o dt Revolution about the y-axis: f(f) = 0

These formulas are easy to remember if you think of the differential of arc length as

dx\? dy>2
ds = — + (= .
s <dt) <dt 4
Then the formulas are written as follows.

b b
1. §= 2wf g(t) ds 2. S=27| f()ds

EXAMPLE 6 Finding the Area of a Surface of Revolution

Let C be the arc of the circle
x2+y?2=9
from (3, 0) to (3/2, 3\/5/2), as shown in Figure 10.35. Find the area of the surface
formed by revolving C about the x-axis.
Solution  You can represent C parametrically by the equations
x=3cost and y=3sint, 0<t< 7/3.

(Note that you can determine the interval for ¢ by observing that t = 0 when x = 3
and ¢t = 7r/3 when x = 3/2.) On this interval, C is smooth and y is nonnegative, and
you can apply Theorem 10.9 to obtain a surface area of

Formula for area of a
surface of revolution

/3
S = 27rf (3 sin £)/(—3 sin £)2 + (3 cos #)2 dr
0'11'/3
= 67Tf sin £/9(sin®  + cos? ) dt
0

/3
= 6 f 3sintdt Trigonometric identity
0

/3
= — 1871'[cos t}
0

- 1877(% - 1)

- 977. ———————



Exercises for Section 10.3

In Exercises 1-4, find dy/dx.

2. x=Yt,y=4—1
4, x =2e8 y=e 0

l.x=1,y=5—4t

3. x =sin? 6, y =cos? 6

In Exercises 514, find dy/dx and d 2y/dx?2, and find the slope
and concavity (if possible) at the given value of the parameter.

Parametric Equations Point
5. x=2,y=3t—1 t=3
6.x=\/;‘,y=3t—1 t=1
7.x=t+1,y=1t2+3 t=-—1
8. x=2+3t+2,y=2 t=20
9. x=2cos 6, y=2sin ozg
10. x =cos 6, y =3sin 0 =0
1. x=2+sec y=1+2tan0 0=g
12 x= V1, y=t—1 =2
13. x = cos 6, y = sin®6 02%
14. x=0—sin6, y=1—cos b 6=m

In Exercises 15 and 16, find an equation of the tangent line at
each given point on the curve.

15. x = 2cot 0 16. x =2 — 3 cos @
y = 2sin?6 y=3+2sin8
y
il 1 4+3V3
T 2?(2,5) ( 2 ’2)

In Exercises 17-20, (a) use a graphing utility to graph the curve
represented by the parametric equations, (b) use a graphing
utility to find dx /dt, dy/dt, and dy [dx at the given value of the
parameter, (c¢) find an equation of the tangent line to the curve
at the given value of the parameter, and (d) use a graphing
utility to graph the curve and the tangent line from part (c).

Parametric Equations Parameter
17. x=2t,y=12—-1 t_=2—
18.x=t—1,y=%+1 t=1
19. x=12—t+2, y=83—-3¢ t=-—1
20. x =4cos 6, y=13sin8 Gzéz

SECTION 10.3
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See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 21-24, find the equations of the tangent lines at the
point where the curve crosses itself,

21. x =2sin2s, y=3sint

22, x =2 — mcost, y=2t— wsint

2. x=r—t y=2-3t—1

24, x=1—6t y=1=

In Exercises 25 and 26, find all points (if any) of horizontal and
vertical tangency to the portion of the curve shown.

25. Involute of a circle: 26. x = 20
x=cosf+ Osind y = 2(1 — cos 0)
y = sinf — fcosO
y
A
10
8
6
4..
- X
2'/\
N N x
2 4 6 8 10 12

In Exercises 27-36, find all points (if any) of horizontal and
vertical tangency to the curve. Use a graphing utility to confirm
your results.

27.x=1—1t y=12

28, x=t+1, y=1t2+ 3¢t

29, x=1—-1t y=1—-3t

30, x=t2—t+2, y=1—73t

3. x=3cosf, y=3sinb

32. x=cos 8, y=2sin20

33, x=4+2cos, y=—1+siné
34, x =4cos?9, y=2sin@

35. x =secH, y=tan0

36. x = cos?6, y=cos¥f

In Exercises 37—42, determine the ¢ intervals on which the curve
is concave downward or concave upward.

3. x=12, y=t—1t

3. x=2+1, y=¢2+28
39, x=2t+1Int, y=2t—Int
40. x=1>, y=Int

41, x =sint, y=cost, O<t<

42. x=2cost, y=sint, 0<t<2mw
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Arc Length 1In Exercises 43-46, write an integral that repre- '_1” 59. Folium of Descartes

CHAPTER 10

sents the arc length of the curve on the given interval. Do not
evaluate the integral.

43.
44,
45.
46.

Arc

47.
48.

49.

50.
51.

52.

Parametric Equations - Interval

x =2 =12 y=23 l<t<2
x=Int, y=¢+1 1<tr<6
x=e+2, y=2r+1 —2<t<2
X=1t+sint, y=t—cost 0<r< o

Length  In Exercises 47-52, find the arc length of the curve
on the given interval.
Parametric Equations Interval
x=1% y=72 0<r<2
x=12+1, y=4+3 —1<t<0
x=e'cost, y=e 'sint OStsg
x = arcsint, y =InJ1 — {2 0<r<i
x:\/;,y=3t—1 <<
13 1

=1, =— 4 — <t<2

IR Y00 T 6 =

Arc
ont
53.
54.
55.
56.

H‘_’ s

e ss.

Length  In Exercises 53-56, find the arc length of the curve
he interval [0, 247].

Hypocycloid perimeter: x = a cos3 6,y = a sin3 6

Circle circumference: x = a cos 6,y = a sin 0

Cycloid arch: x = a(8 — sin 6), y = a(1 ~ cos 6)

Involute of a circle: x = cos § + Osin 6,y = sin § — O cos 6

FPath of a Projectile 'The path of a projectile is modeled by the
parametric equations

x = (90 cos 30°)¢ and ¥ = (90 sin 30°)t — 1612

where x and y are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the ran ge of the
projectile.

(¢) Use the integration capabilities of a graphing utility to
approximate the arc length of the path. Compare this result
with the range of the projectile.

Path of a Projectile 1f the projectile in Exercise 57 is
launched at an angle 6 with the horizontal, its parametric
equations are

x=(90cos @)t and y= (90sin 6) — 16:2.

Use a graphing utility to find the angle that maximizes the
range of the projectile. What angle maximizes the arc len gth of
the trajectory?

Conics, Parametric Equations, and Polar Coordinates

Consider the parametric equations

st and S
1+ 00 YT

X

(a) Use a graphing utility to graph the curve represented by the
parametric equations.

(b) Use a graphing utility to find the points of horizontal
tangency to the curve,

(c) Use the integration capabilities of a graphing utility to
approximate the arc length of the closed loop. (Hint: Use
symmetry and integrate over the interval 0 < r < 1.)

. Witch of Agnesi  Consider the parametric equations

<0< —.

x=4cotf and y=4sin?6, -

(SIE
STE]

(a) Use a graphing utility to graph the curve represented by the
parametric equations.

(b) Use a graphing utility to find the points of horizontal
tangency to the curve,

(c) Use the integration capabilities of a graphing utility
to approximate the arc length over the interval
w/4 <0< /2.

61. Writing

(a) Use a graphing utility to graph each set of parametric
equations.

x =2t — sin(2f)
y=1—cost y =1 — cos(2f)

0<r< 27 0t

X =1t—sint

|

(b) Compare the graphs of the two sets of parametric equations
in part (a). If the curve represents the motion of a particle
and ¢ is time, what can you infer about the average speeds
of the particle on the paths represented by the two sets of
parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if
the path is modeled by

x = %t - sin(%t) and y=1- cos(%t).

62. Writing

(a) Each set of parametric equations represents the motion of a
particle. Use a graphing utility to graph each set.

First Particle Second Particle
x =3cost x =4sint
y=4sint y=23cost
0<rtr<27 0<r< 27

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same
time? If so, identify the points,

(d) Explain what happens if the motion of the second particle
is represented by

x=2+3sint, y=2—4cost, 0<r<2m



Hr:' Surface Area In Exercises 63-66, write an integral that

represents the area of the surface generated by revolving the
curve about the x-axis. Use a graphing utility to approximate
the integral.

Parametric Equations Interval
63. x=4t, y=t+1 0<r<2
1
64.x=Zt2, y=t+2 0<t<4
65. x = cos> 8, y = cos 6 0S0S7—2T
66. x =0+ sinh, y=60+cosb 0S0<%T

Surface Area 1In Exercises 67-72, find the area of the surface
generated by revolving the curve about each given axis.

67. x=t,y=2t, 0=<1t<4,
68. x=t,y=4-2t, 0<1t<2,

(a) x-axis  (b) y-axis

(a) x-axis  (b) y-axis

69. x =4cos 0,y =4sinf, 0< Osg, y-axis

70. x =1y =141, 1<1<2, y-axis
71. x=acos? 6,y = asin®f, 0<6< 7, xaxis
72. x =acos 8,y =bsinfh, 0= 0<2m

(a) x-axis

 Writing About Concepts

73. Give the parametric form of the derivative.
74. Mentally determine dy/dx.
@x=1 y=4

(b) y-axis

by x=t y=4—-3

75. Sketch a graph of a curve defined by the parametric equa-
tions x = g(r) and y = f(r) such that dx/dt > 0 and
dy/dt < 0 for all real numbers ?.

76. Sketch a graph of a curve defined by the parametric equa-
tions x = g(#) and y = f(f) such that dx/dt <0 and
dy/dt < 0 for all real numbers ?.

77. Give the integral formula for arc length in parametric form.

78. Give the integral formulas for the areas of the surfaces of
revolution formed when a smooth curve C is revolved about
(a) the x-axis and (b) the y-axis.

79. Use integration by substitution to show that if y is a continuous
function of x on the interval a < x < b, where x = f(f) and
y = (1), then

[ ‘bydx - f ¢ 0 dr

where f(#,) = a, f(t,) = b, and both g and f” are continuous
on [t, 1,].
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80. Surface Area A portion of a sphere of radius r is removed by
cutting out a circular cone with its vertex at the center of the
sphere. The vertex of the cone forms an angle of 20. Find the
surface area removed from the sphere.

Area In Exercises 81 and 82, find the area of the region. (Use
the result of Exercise 79.)

81. x = 2sin’6 82. x =2cot
y = 2sin* ftan @ y = 2sin* 6
0s0<g 0<0<m
¥
— - X e |._! f———=* x
-2 oy e | 12
-2

P‘P' Areas of Simple Closed Curves In Exercises 83-88, use a

computer algebra system and the result of Exercise 79 to match
the closed curve with its area. (These exercises were adapted
from the article “The Surveyor’s Area Formula” by Bart
Braden in the September 1986 issue of the College Mathematics
Journal, by permission of the author.)

(b) ima?

(e) 2mrab

(a) Sab
(d) mab

(¢) 2ma?
) 6ma’

83. Ellipse: (0 < ¢t < 27) 84. Astroid: (0 < ¢ < 2m)

x=bcost x = acos’t
y =asint y = asin’t
y

i

y
)
I]
- X
|

85. Cardioid: (0 < ¢ < 2m)

x = 2acost — acos 2t

86. Deltoid: (0 < ¢ < 2m)
x =72acost+ acos2t

y = 2asint — asin 2t

y
i
. o

y = 2asint — asin 2t
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87. Hourglass: (0 < ¢ < 27) 88. Teardrop: (0 < t < 27)

= g sin 2t x = 2acost — qsin 2t
y=bsint y=bsint
"
1
b
= X — - X

Centroid In Exercises 89 and 90, find the centroid of the region
bounded by the graph of the parametric equations and the
coordinate axes. (Use the result of Exercise 79.)

89 x= Vy=4—¢ 9. x=V4—1t,y=/1

Volume 1In Exercises 91 and 92, find the volume of the solid
formed by revolving the region bounded by the graphs of the
given equations about the x-axis. (Use the result of Exercise 79.)
91. x=3cos 6, y=3siné

92, x=cos 8, y=3sin6 a>0

93. Cycloid Use the parametric equations

x = a(f — sin 6) and y=a(l —cos6),a>0

to answer the following.
(a) Find dy/dx and d?y/dx?.

(b) Find the equations of the tangent line at the point where
0= /6.

(c) Find all points (if any) of horizontal tangency.

(d) Determine where the curve is concave upward or concave
downward.

(e) Find the length of one arc of the curve.

94. Use the parametric equations

x=72/3 and y=73t- %ﬂ

to answer the following,

,

"'15" (a) Use a graphing utility to graph the curve on the interval
—3< <3

(b) Find dy/dx and d%y/dx2.
(¢) Find the equation of the tangent line at the point ( NE %)
(d) Find the length of the curve.

(¢) Find the surface area generated by revolving the curve
about the x-axis.

9S. Involute of a Circle The involute of a circle is described by
the endpoint P of a string that is held taut as it is unwound from
a spool that does not turn (see figure). Show that a parametric
representation of the involute is

x = r(cos 0 + 6 sin 6) and y = r{sin § — Ocos 6).

Conics, Parametric Equations, and Polar Coordinates

Figure for 95

96. Involute of a Circle The figure shows a piece of string tied
to a circle with a radius of one unit. The string is just long
enough to reach the opposite side of the circle. Find the area
that is covered when the string is unwound counterclockwise.

f'jF 97.

(a) Use a graphing utility to graph the curve given by

= 2
Ty e T

—20 <t < 20.

(b) Describe the graph and confirm your result analytically.

(c) Discuss the speed at which the curve is traced as ¢
increases from —20 to 20.

e os.

Tracirix A person moves from the origin along the positive
y-axis pulling a weight at the end of a 12-meter rope. Initially,
the weight is located at the point (12, 0).

(a) In Exercise 86 of Section 8.7, it was shown that the path
of the weight is modeled by the rectangular equation

— / _ =)
y= —121n<12¢> ~ J144 =2

X

where 0 < x < 12. Use a graphing utility to graph the
rectangular equation,

(b) Use a graphing utility to graph the parametric equations

t t
S —_— = —_ t [
x = 12 sech D and y =1t — 12tanh 2
where ¢ = 0. How does this graph compare with the graph
in part (a)? Which graph (if either) do you think is a better
representation of the path?

(¢) Use the parametric equations for the tractrix to verify that
the distance from the y-intercept of the tangent line to the
point of tangency is independent of the location of the
point of tangency.

True or False? In Exercises 99 and 100, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. If x = f(t) and y = g(1), then d2y/dx? = g"(t) /" ().

100. The curve given by x = 1%, y = ¢2 has a horizontal tangent at
the origin because dy/dt = 0 whent = 0.



P=(r0

0 = directed angle

Polar
axis

Polar coordinates
Figure 10.36

PoLAR COORDINATES

The mathematician credited with first using
polar coordinates was James Bernoulli, who
introduced them in 1691. However, there is
some evidence that it may have been Isaac
Newton who first used them.
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Polar Coordinates and Polar Graphs

¢ Understand the polar coordinate system.

o Rewrite rectangular coordinates and equations in polar form and vice versa.
Sketch the graph of an equation given in polar form.

Find the slope of a tangent line to a polar graph.

Identify several types of special polar graphs.

Polar Coordinates

So far, you have been representing graphs as collections of points (x, y) on the rec-
tangular coordinate system. The corresponding equations for these graphs have been
in either rectangular or parametric form. In this section you will study a coordinate
system called the polar coordinate system.

To form the polar coordinate system in the plane, fix a point O, called the pole
(or origin), and construct from O an initial ray called the polar axis, as shown in
Figure 10.36. Then each point P in the plane can be assigned polar coordinates (r, ),
as follows.

r = directed distance from O to P

6 = directed angle, counterclockwise from polar axis to segment opP

Figure 10.37 shows three points on the polar coordinate system. Notice that in this
system, it is convenient to locate points with respect to a grid of concentric circles
intersected by radial lines through the pole.

Vi
3 ==L 2
|

3 — -
0

Il
\
k\

X
z/?i‘
2

(a) (b) ©
Figure 10.37

g
wiy

NN

N, o

With rectangular coordinates, each point (x, y) has a unique representation. This
is not true with polar coordinates. For instance, the coordinates (r, 6) and (r, 27 + 6)
represent the same point [see parts (b) and (c) in Figure 10.37]. Also, because r is a
directed distance, the coordinates (r, 6) and (—r, 6 + 1r) represent the same point. In
general, the point (r, 6) can be written as

(r, 6) = (r, 6 + 2nm)
or
(r,0)=(—r,0+ (2n + 1)m)

where n is any integer. Moreover, the pole is represented by (0, 6), where 6 is any
angle.
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=
— “Polar axis
(Origin) ~ * (x-axis)

Relating polar and rectangular coordinates
Figure 10.38

2
r.0=(v3 §)
I [ ]
r 6)= (2. 1) .y =(3,43)
L] | 1 i } - X
-2 -1 | 2
(6, ) = (-2, 0)
-1
-2

To convert from polar to rectangular coordi-
nates, let x = rcos fand y = rsin 6.
Figure 10.39

y

i

v0=(2.3)
(x, )=(0,2)
o= %)
e |
(=11
i i | H Ll g
) -1 | I 2

To convert from rectangular to polar coordi-

nates, let tan § = y/xandr = /x? + 2.
Figure 10.40
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Coordinate Conversion

To establish the relationship between polar and rectangular coordinates, let the polar
axis coincide with the positive x-axis and the pole with the origin, as shown in Figure
10.38. Because (x,y) lies on a circle of radius r, it follows that /2 = x2 + ¥,
Moreover, for r > 0, the definition of the trigonometric functions implies that

b4

x .
cos 0 = —, and sin @ = =,
r r

tan 6 = X,
x

If » < 0, you can show that the same relationships hold.

‘ THEOREM 10.10 Coordinate Conversion

The polar coordinates (r, 6) of a point are related to the rectangular coordinates
(x, ) of the point as follows.

1. x =rcos 6 2. tan 9 =

+ e

2 2

y = rsin 6 r2=x2+y

EXAMPLE | Polar-to-Rectangular Conversion
L ]

a. For the point (r, 6) = (2, ),
X=rcosf@=2cosm=—2 and Yy =rsin § = 2sin 77 = Q.

So, the rectangular coordinates are (x, y) = (=2, 0).
b. For the point (r, §) = (\/§, 77/6),

T 3 LT
x—ﬁcosz—z and y—\/§51n6—

So, the rectangular coordinates are (x, y) = (3/ 2, \/§/2)
See Figure 10.39.

>

EXAMPLE 2 Rectangular-to-Polar Conversion
I

a. For the second quadrant point (x, y) = (-1, 1),

= = _ _ 37
tan 0 x 1 6 1

Because 6 was chosen to be in the same quadrant as (x, y), you should use a posi-
tive value of 7.

r=Jx%+ y?
= =12+ (1)
= \/E
This implies that one set of polar coordinates is (r, §) = (\/i, 3w/ 4).

b. Because the point (x, y) = (0, 2) lies on the positive y-axis, choose 6 = /2 and
r = 2, and one set of polar coordinates is (r, 6) = (2, 7/2).

See Figure 10.40.
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(a) Circle: r =2

=

3
2
(b) Radial line: 8 = g
n
2
’ (<=/1>1/|7‘50
3z

2
(¢) Vertical line: r = sec 0

Figure 10.41

@

-9 9
-6

Spiral of Archimedes

Figure 10.42
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Polar Graphs

One way to sketch the graph of a polar equation is to convert to rectangular coordi-
nates and then sketch the graph of the rectangular equation.

EXAMPLE 3 Graphing Polar Equations

Describe the graph of each polar equation. Confirm each description by converting to
a rectangular equation.

a.r=2 b.GZ%T c. r=sect

Solution

a. The graph of the polar equation r = 2 consists of all points that are two units from
the pole. In other words, this graph is a circle centered at the origin with a radius
of 2. [See Figure 10.41(a).] You can confirm this by using the relationship
r2 = x2 + y? to obtain the rectangular equation

x4yt = 92, Rectangular equation

b. The graph of the polar equation 6 = /3 consists of all points on the line that
makes an angle of /3 with the positive x-axis. [See Figure 10.41(b).] You can
confirm this by using the relationship tan 6 = y/x to obtain the rectangular
equation

y= \/5 X. Rectangular equation

c. The graph of the polar equation r = sec 6 is not evident by simple inspection, so
you can begin by converting to rectangular form using the relationship r cos 6 = x.

r = sec Polar equation
rcos 0 =1
x=1 Rectangular equation

From the rectangular equation, you can see that the graph is a vertical line. [See Figure

TECHNOLOGY Sketching the graphs of complicated polar equations by hand
can be tedious. With technology, however, the task is not difficult. If your graphing
utility has a polar mode, use it to graph the equations in the exercise set. If your
graphing utility doesn’t have a polar mode, but does have a parametric mode, you
can graph r = f(f) by writing the equation as

x = f(6) cos 6
y = £(6) sin 6.

For instance, the graph of r = %0 shown in Figure 10.42 was produced with a
graphing calculator in parametric mode. This equation was graphed using the
parametric equations

X =%00030
= ]—OqinO
y 2 *

with the values of 6 varying from —4r to 477. This curve is of the form r = a6 and
is called a spiral of Archimedes.
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T W ot
= wwwi
r=3cos360 2 -

The area of one petal of the rose curve that
lies between the radial lines § = — 77 /6
and 6 = 7 /6is37/4.

Figure 10.51

NOTE  To find the area of the region
lying inside all three petals of the rose
curve in Example 1, you could not
simply integrate between 0 and 2.

In doing this you would obtain 97/2,
which is twice the area of the three
petals. The duplication occurs because
the rose curve is traced twice as 6
increases from O to 27r.

r=1-2sin @

The area between the inner and outer loops
is approximately 8.34.
Figure 10.52

D EXAMPLE | Finding the Area of a Polar Region
L]

Find the area of one petal of the rose curve given by r = 3 cos 36.

Solution  In Figure 10.51, you can see that the right petal is traced as 6 increases
from — /6 to /6. So, the area is

A= l ) 240 = l e 3 30)2 de Formula for area in
2 " ) N /6( s polar coordinates
9 IR w5 cos 66 Trigonometric
- 5 st 2 do identity
~ 2[0 _ sin 60}"/6
4 6 —/6
7w =
= —— 4+ —
4\ 6 6)
=37
2"

EXAMPLE 2  Finding the Area Bounded by a Single Curve

Find the area of the region lying between the inner and outer loops of the limagon
r=1-—2sin6.

Solution In Figure 10.52, note that the inner loop is traced as 6 increases from /6
to 57/6. So, the area inside the inner loop is

1 (" 1 Sm/6 Formula for area in
A ==] rtde== (1 — 2sin #)2do

2 2 polar coordinates

o /6
1 57/6
=—f (1 — 4sin 6 + 4 sin? 6) d6
2 /6
. l e 1 —4sing+4 1 — cos 20 4o Trigonometric
"2 ) e ) identity
1 5w/6
= —f (3 —4sin @ — 2cos26)de Simplify.
2 /6
1 Sw/6
= ~[30 + 4 cos 6 — sin 20]
2 /6
1
= E(ZW = 3\/5)
_ 33
>

In a similar way, you can integrate from 57/6 to 137/6 to find that the area of the
region lying inside the outer loop is A, = 27 + (3\/§/2). The area of the region
lying between the two loops is the difference of A, and A,.

A=A2—A1=<27T+32£>_<w—¥>=w+ 343 ~ 8.34



FOR FURTHER INFORMATION For
more information on using technology to
find points of intersection, see the article
“Finding Points of Intersection of Polar-
Coordinate Graphs” by Warren W. Esty
in Mathematics Teacher. To view this
article, go to the website
www.matharticles.com.

SECTION 10.5 Area and Arc Length in Polar Coordinates 741

Points of Intersection of Polar Graphs

Because a point may be represented in different ways in polar coordinates, care must
be taken in determining the points of intersection of two polar graphs. For example,

consider the points of intersection of the graphs of
r=1—2cosf and r=1

as shown in Figure 10.53. If, as with rectangular equations, you attempted to find the
points of intersection by solving the two equations simultaneously, you would obtain

r=1-—2cos 6 First equation
1=1-—2cos @ Substitute » = 1 from 2nd equation into 1st equation.
cos =0 Simplify.
6= T 3—7T Solve for 6.
2" 2

The corresponding points of intersection are (1, /2) and (1, 37r/2). However, from
Figure 10.53 you can see that there is a third point of intersection that did not show
up when the two polar equations were solved simultaneously. (This is one reason why
you should sketch a graph when finding the area of a polar region.) The reason the
third point was not found is that it does not occur with the same coordinates in the two
graphs. On the graph of r = 1, the point occurs with coordinates (1, ), but on the
graph of r = 1 — 2 cos 6, the point occurs with coordinates (—1, 0).

You can compare the problem of finding points of intersection of two polar
graphs with that of finding collision points of two satellites in intersecting orbits about
Earth, as shown in Figure 10.54. The satellites will not collide as long as they reach
the points of intersection at different times (6-values). Collisions will occur only
at the points of intersection that are “simultaneous points”—those reached at the same
time (6-value).

NOTE Because the pole can be represented by (0, §), where 6 is any angle, you should check
separately for the pole when finding points of intersection.

r
2
|__

Limagon: r=1-2cos 6

Circle: ©
r=1 g

Three points of intersection: (1, 7/2),
(=1,0),(1,37/2)
Figure 10.53

The paths of satellites can cross without causing a
collision.
Figure 10.54
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Circle:
r=—6cos @

Figure 10.55

Cardioid:
r=2-2cos @

Conics, Parametric Equations, and Polar Coordinates

EXAMPLE 3 Finding the Area of a Region Between Two Curves
L]

Find the area of the region common to the two regions bounded by the following
curves.

r= —06cos 0 Circle
r=2—2cos 6 Cardioid

Solution Because both curves are symmetric with respect to the x-axis, you can work
with the upper half-plane, as shown in Figure 10.55. The gray shaded region lies
between the circle and the radial line & = 247/3. Because the circle has coordinates
(0, 7/2) at the pole, you can integrate between /2 and 277/3 to obtain the area of this
region. The region that is shaded red is bounded by the radial lines § = 277/3 and

= qrand the cardioid. So, you can find the area of this second region by integrating
between 27/3 and 7. The sum of these two integrals gives the area of the
common region lying above the radial line 6 = .

Region between circle Region between cardioid and
and radial line § = 27/3 radial lines # = 27r/3 and § = 7r

A 1 2m/3 1 T
—:—f (—60050)2d0+—f (2 — 2cos 0)*df
2 2 /2 27/3

2m/3 T
18f c0320d0+%f (4 —8cos @+ 4cos? 6 do
2m/3

2m/3 r
9f 1+cos20)d9+f (3 — 4cos @+ cos 26) do
2m/3

27/3
[0+sm20} {30_4sn0+s1n20:|
2 2 |2w3

9(2377———g>+<3w—27r+2\/§+§>

Il
O

_ o7
2
=~ 7.85

Finally, multiplying by 2, you can conclude that the total area is 5. —

NOTE To check the reasonableness of the result obtained in Example 3, note that the area of
the circular region is 7772 = 917. So, it seems reasonable that the area of the region lying inside
the circle and the cardioid is 5.

To see the benefit of polar coordinates for finding the area in Example 3, consi-
der the following integral, which gives the comparable area in rectangular coordinates.

-3/2
—:f \/2\/1——2x—x2—2x+2dx+J
-4

=32

(4]

Use the integration capabilities of a graphing utility to show that you obtain the same
area as that found in Example 3.



NOTE When applying the arc length
formula to a polar curve, be sure that the
curve is traced out only once on the
interval of integration. For instance, the
rose curve given by r = cos 38 is traced
out once on the interval 0 < 6 < m, but
is traced out twice on the interval
0<6<2m

(STR-]

r=2-2cos 6

Figure 10.56
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Arc Length in Polar Form

The formula for the length of a polar arc can be obtained from the arc length formula
for a curve described by parametric equations. (See Exercise 77.)

THEOREM 10.14 Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval & < 6 < .
The length of the graph of r = f(6) from 6 = ato 6 = Bis

B 8
. f JTOF ¥ [F@Tdo = f

EXAMPLE 4 Finding the Length of a Polar Curve

Find the length of the arc from 6 = 0 to § = 2 for the cardioid
r=f(0=2—2cos 6

as shown in Figure 10.56.
Solution Because f/(6) = 2 sin 6, you can find the arc length as follows.

s —— -
§ = J \/[f(g)]2 + [ F(8)]*> d6 Formula for arc length of a polar curve

= f V(2 — 2cos §)2 + (2sin )% d6
0

2
= Zﬁf J1 — cos 6d6 Simplify

=/ J +/ 2sin? = d0 Trigonometric identity

=4 sin = d0 sing Ofor0 <6< 2w
§] 2 2

27
=8 [— cos g}o
=38(1 +1)
=16
In the fifth step of the solution, it is legitimate to write
J2sin(6/2) = /2 sin(6/2)
rather than
V2'5in%(6/2) = /2 sin(6/2))|
because sin(6/2) = 0for0 < 6 < 2. S
NOTE Using Figure 10.56, you can determine the reasonableness of thls answer by compar-

ing it with the circumference of a circle. For example, a circle of radius 3 5 has a circumference
of 57 = 15.7.



744 CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates

NOTE When using Theorem 10.15,
check to see that the graph of r = £(6)
is traced only once on the interval

a < 0 < B. For example, the circle
given by r = cos 6 is traced only once
on the interval 0 < 6 < 7,

Area of a Surface of Revolution

The polar coordinate versions of the formulas for the area of a surface of revolution can
be obtained from the parametric versions given in Theorem 10.9, using the equations
x =rcos fand y = rsin 0.

THEOREM 10.15 Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval @ < 6 < S,
The area of the surface formed by revolving the graph of r = £(0) from 6 = «
to § = B about the indicated line is as follows.

B
1. §= 27Tf f(@) sin 6+ [f(@)]z + [f’(O)]2 do About the polar axis

8
2. 8= 27TJ F(0) cos 6O + [ F6)]?do About the line 6 :g

EXAMPLE 5 Finding the Area of a Surface of Revolution

Find the area of the surface formed by revolving the circle r = f(6) = cos 6 about the
line § = /2, as shown in Figure 10.57.

NIR

r=cos8

Pinched

torus

(@) )
Figure 10.57

Solution  You can use the second formula given in Theorem 10.15 with
f(6) = —sin 6. Because the circle is traced once as § increases from 0 to 7, you have

Formula for area of a surface of

B
S = Zﬂf f(e) cos 0 [f(@)]2 + [f/(O)P do revolution

= 2’7TJ' cos 6(cos 6)/cos® 0 + sin? 6.d6
0

a
= 27Tf cos® 0do Trigonometric identity
0
o
= Wj (1 + cos 26)do Trigonometric identity
0
sin 26"
= 77'[ 6+ —] = 72,
2 4] —
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Exercises for Section 10.5
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Area and Arc Length in Polar Coordinates

See www.CalcChat.com for worked-out solutions to odd-numbered exercises

In Exercises 1-4, write an integral that represents the area of the
shaded region shown in the figure. Do not evaluate the integral.

1. r=2sin 6 2. r =cos 280

NI
N

4, r=1 — cos 20

[
[SIE ]

In Exercises 5 and 6, find the area of the region bounded by the
graph of the polar equation using (a) a geometric formula and
(b) integration.

5. r=28sin 6@
6. r =3cos 0
In Exercises 7-12, find the area of the region.

7. One petal of r = 2 cos 30

8. One petal of r = 6 sin 20

9. One petal of r = cos 20
10. One petal of r = cos 50
11. Interiorof r = 1 — sin

12. Interior of r = 1 — sin 0 (above the polar axis)

fdrV' In Exercises 13-16, use a graphing utility to graph the polar

equation and find the area of the given region.

13. Inner loop of r =1 + 2 cos 6

14. Inner loop of r =4 — 6sin 6

15. Between the loops of r = 1 + 2 cos
16. Between the loops of » = 2(1 + 2 sin 6)

In Exercises 17-26, find the points of intersection of the graphs
of the equations.

17. r=1+ cos 6 18. r = 3(1 + sin 6)
r=1—cos @ r = 3(1 — sin 6)

2
2

1

|

19. r =1+ cos @ 20. r =2 — 3cos 6

r=1—sinf r = cos 6
r
‘2

L)

_l_ -
_i
2. r=4—5sin 8 22. r=1+cos 0
r=3sinb r=3cos 6
_9 =T
23.r—2 24.9—4
r=2 r=2
25. r = 4sin 26 26. r =3 +sin §
r=2 =2csc 6

HC’ In Exercises 27 and 28, use a graphing utility to approximate
the points of intersection of the graphs of the polar equations.
Confirm your results analytically.

27. r=2+3cos 8 28. r = 3(1 — cos 6)

=se00 r:L
2 1 —cos 6

,a% Writing In Exercises 29 and 30, use a graphing utility to find
the points of intersection of the graphs of the polar equations.
Watch the graphs as they are traced in the viewing window.
Explain why the pole is not a point of intersection obtained by
solving the equations simultaneously.

29, r=cos 6
r=2—3sin6

30. r=4sin 6
r=2(1 + sin 6)
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In Exercises 31-36, use a graphing utility to graph the polar H" In Exercises 49-54, use a graphing utility to graph the polar

equations and find the area of the given region.

31. Common interior of » = 4 sin 26 and r = 2

32. Common interior of » = 3(1 + sin 0) and r = 3(1 — sin 6)
33. Common interior of ¥ = 3 — 2sinfand r = —3 + 2 sin 6
34. Common interiorof r =5 — 3sinfandr =5 — 3 cos 0
35. Common interior of » = 4 sin @ and = 2

36. Inside » = 3 sin # and outside r = 2 — sin 8

In Exercises 37-40, find the area of the region.

37. Inside r = a(1 + cos 6) and outside r = a cos 6
38. Inside » = 2a cos 6 and outside r = g
39. Common interior of » = a(l + cos §) and r = a sin §

40. Common interior of r = g cos § and r = g sin  where a > 0

41. Antenna Radiation The radiation from a transmitting
antenna is not uniform in all directions. The intensity from a
particular antenna is modeled by

r = acos?é.

(a) Convert the polar equation to rectangular form.

H“’ (b) Use a graphing utility to graph the model for a = 4 and
a=6.

(c) Find the area of the geographical region between the two
curves in part (b).

42. Area The area inside one or more of the three interlocking
circles

r=2acosf, r=2asinf, and r=a
is divided into seven regions. Find the area of each region.
43. Conjecture Find the area of the region enclosed by
r = a cos(né)
forn =1,2,3,. . ..Use the results to make a conjecture about
the area enclosed by the function if » is even and if » is odd.
44. Area Sketch the strophoid

T T
r=sec B — 2cos 6, 2<0<2.

Convert this equation to rectangular coordinates. Find the area
enclosed by the loop.

In Exercises 45-48, find the length of the curve over the given
interval.

Polar Equation Interval
45. r=a 0<o< 2
46. r = 2acos 6 —gsesg
47. r =1+ sin 6 0<o0<27
48. r = 8(1 + cos 6) 0<6<2r

equation over the given interval. Use the integration capabilities
of the graphing utility to approximate the length of the curve
accurate to two decimal places.

49, r = 20, osos%’ 50. r=sech, 0<0<

w3

51.r=%, m< <27 52. r=e¢€% 0<6<mw

53. r
54. r

Il

sin(3cos @), 0<6< 7
2sin(2cos @), 0<O< 7

In Exercises 55-58, find the area of the surface formed by
revolving the curve about the given line.

Polar Equation Interval Axis of Revolution
55. r=6cos 0 0< osg Polar axis
T T
L= SO< =
56. r =acos @ 0<9 2 e >
57. r = e 0<9s7 6=>7
58. r = a(l + cos 6) 0<sd<nw Polar axis

Pl“’ In Exercises 59 and 60, use the integration capabilities of a

graphing utility to approximate to two decimal places the area
of the surface formed by revolving the curve about the polar
axis.

59, r = 4 cos 26, ososf 60. r=6, 0<0<

Writing About Concepts

61. Give the integral formulas for area and arc length in polar
coordinates.

62. Explain why finding points of intersection of polar graphs
may require further analysis beyond solving two equations
simultaneously.

63. Which integral yields the arc length of r = 3(1 — cos 26)?
State why the other integrals are incorrect.

(a) 3[ (1 — cos26)? + 45in226d6
Q

i

() 12| /{0 — cos 20)? + 4sin” 20 d8

(4]

(c) BJ (1 — cos26)? + 45sin2260d6
o

/2
(d) 6f V(1 — cos 26)? + 45in226d6
0

64. Give the integral formulas for the area of the surface of
revolution formed when the graph of r = f(6) is revolved
about (a) the x-axis and (b) the y-axis.
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65. Surface Area of a Torus Find the surface area of the torus
generated by revolving the circle given by r = 2 about the line
r = 5sec 0.

66. Surface Area of a Torus Find the surface area of the torus
generated by revolving the circle given by r = a about the line
r = bsec 6, where 0 < a < b.

67. Approximating Area Consider the circle r = 8 cos 6.
(a) Find the area of the circle.

(b) Complete the table giving the areas A of the sectors of the
circle between # = 0 and the values of 8 in the table.

1020406 |08[10|12](14
A

(c) Use the table in part (b) to approximate the values of 6 for
which the sector of the circle composes 31, %, and % of the
total area of the circle.

I I" (d) Use a graphing utility to approximate, to two decimal
places, the angles 6 for which the sector of the circle
11 3 .
composes z, 3, and 3 of the total area of the circle.

(e) Do the results of part (d) depend on the radius of the circle?
Explain.

68. Approximate Area Consider the circle » = 3 sin 6.
(a) Find the area of the circle.

(b) Complete the table giving the areas A of the sectors of the
circle between # = 0 and the values of 6 in the table.

0|02|04|06|08|10]|12 |14
A

(c) Use the table in part (b) to approximate the values of 8 for
which the sector of the circle composes %, ﬁ, and % of the
total area of the circle.

(d) Use a graphing utility to approximate, to two decimal
places, the angles 6 for which the sector of the circle
composes §, 3, and 1 of the total area of the circle.

69. What conic section does the following polar equation represent?
r=asinf + bcos 0

70. Area Find the area of the circle given by r = sin § + cos 6.
Check your result by converting the polar equation to
rectangular form, then using the formula for the area of a circle.

71. Spiral of Archimedes The curve represented by the equation
r = a#, where a is a constant, is called the spiral of
Archimedes.

H:’ (a) Use a graphing utility to graph r = 6, where 6 = 0.
What happens to the graph of » = a# as a increases? What
happens if 8 < 0?

(b) Determine the points on the spiral r = af (a > 0, 6 > 0),
where the curve crosses the polar axis.

Area and Arc Length in Polar Coordinates 747

(c) Find the length of » =  over the interval 0 < 6 < 2.
(d) Find the area under the curve r = 8for 0 < 6 < 2.

72. Logarithmic Spiral The curve represented by the equation
r = aeb®, where g and b are constants, is called a logarithmic
spiral. The figure below shows the graph of r = ¢%9,
—2a £ 0 £ 2. Find the area of the shaded region.

73. The larger circle in the figure below is the graph of r = 1. Find
the polar equation of the smaller circle such that the shaded
regions are equal.

o
2

74. Folium of Descartes A curve called the folium of Descartes
can be represented by the parametric equations

3¢ nd _ 312
14+ 4 YT s

x =

(a) Convert the parametric equations to polar form.
(b) Sketch the graph of the polar equation from part (a).

(c) Use a graphing utility to approximate the area enclosed by
the loop of the curve.

True or False? In Exercises 75 and 76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

75. If f(6) > O for all 8 and g(6) < O for all 6, then the graphs of
r = f(6) and r = g(6) do not intersect.

76. If f(6) = g(6) for 6 = 0, w/2, and 37/2, then the graphs of
r = f(6) and r = g(6) have at least four points of intersection.

77. Use the formula for the arc length of a curve in parametric form
to derive the formula for the arc length of a polar curve.
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EXPLORATION

Graphing Conics Set a graphing
utility to polar mode and enter polar
equations of the form

SO U —
1+ bcoséd

or

a

"T1+bsne

As long as a # 0, the graph should
be a conic. Describe the values of

a and b that produce parabolas. What
values produce ellipses? What values
produce hyperbolas?

~ Polar Equations of Conics and Kepler’s Laws

Conics, Parametric Equations, and Polar Coordinates

* Analyze and write polar equations of conics.
¢ Understand and use Kepler’s Laws of planetary motion.

Polar Equations of Conics

In this chapter you have seen that the rectangular equations of ellipses and hyperbo-
las take simple forms when the origin lies at their centers. As it happens, there are
many important applications of conics in which it is more convenient to use one of the
foci as the reference point (the origin) for the coordinate system. For example, the sun
lies at a focus of Earth’s orbit. Similarly, the light source of a parabolic reflector lies
at its focus. In this section you will see that polar equations of conics take simple
forms if one of the foci lies at the pole.

The following theorem uses the concept of eccentricity, as defined in Section
10.1, to classify the three basic types of conics. A proof of this theorem is given in
Appendix A.

THEOREM 10.16 Classification of Conics by Eccentricity

Let F be a fixed point (focus) and D be a fixed line (directrix) in the plane.
Let P be another point in the plane and let e (eccentricity) be the ratio of the
distance between P and F to the distance between P and D. The collection of
all points P with a given eccentricity is a conic.

1. The conic is an ellipse if 0 < e < 1.

2. The conic is a parabola if e = 1.

3. The conic is a hyperbola if e > 1.

b2 n r
Directrix 2 Directrix 2 D1rectr1x 2
] [
Q: . P /
$- 04 /
! ! ; 0
- \F ©.0 F=(0,0)

Ellipse: 0 < e < 1 Parabola: ¢ = 1 Hyperbola: ¢ > 1

PF <1 PF = PQ PF _ P'F
PQ PQ  PY
Figure 10.58

> 1

In Figure 10.58, note that for each type of conic the pole corresponds to the fixed
point (focus) given in the definition. The benefit of this location can be seen in the
proof of the following theorem.



F=(0,0)

, Directrix

Figure 10.59

Directrix y=d

r

r= [
| +esinf

(a) (b)
The four types of polar equations for a parabola
Figure 10.60
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THEOREM 10.17 Polar Equations of Conics
The graph of a polar equation of the form

ed ed

p=— o tr=—"—=
1 +ecosb 1 +esinf

is a conic, where e > 0 is the eccentricity and |d | is the distance between the
focus at the pole and its corresponding directrix.

Proof The following is a proof for r = ed/(1 + e cos 6) with d > 0. In Figure
10.59, consider a vertical directrix d units to the right of the focus F = (0, 0). If
P = (r, 6) is a point on the graph of r = ed/(1 + e cos 8), the distance between P
and the directrix can be shown to be

_ {r

=al

Because the distance between P and the pole is simply PF = |r|, the ratio of PF to
PQis PF/PQ = |r|/|r/e| = |e| = e and, by Theorem 10.16, the graph of the
equation must be a conic. The proofs of the other cases are similar. —

r(1 + ecos 0)

PQ =|d— x| = |d — rcos 0] = p

— rcos 6

The four types of equations indicated in Theorem 10.17 can be classified as
follows, where d > 0.

a. Horizontal directrix above the pole: r= - . -
| + esin

b. Horizontal directrix below the pole: r= S .
1 —esin 6

¢. Vertical directrix to the right of the pole: r =  Edaa
’ £ pote: 1+ ecos
d. Vertical directrix to the left of the pole: r = -
1 —ecos@

Figure 10.60 illustrates these four possibilities for a parabola.

o y Y

'
\ | Directrix Directrix | /

lx=d x=-d

Directrix y =—d / E : \

ed

= = o= ed ed
| —esiné

L e L
| + e cosf | —ecasl

© (d)
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z e IS
) =y e £
9 fex 3—2cosh
[
: il y
0, 2
i 1G.m (15, 0)
— Fé——f— 40
5 o/
>
'B
'8
5
A

The graph of the conic is an ellipse with
e=13
Figure 10.61

e
r
2
3
(—16, 2 ) /
- - — - /_ﬂ
Directrix la=6
32 ' b=8

e 3D
T3+5s

inf

The graph of the conic is a hyperbola with
=1

Figure 10.62

EXAMPLE |  Determining a Conic from Its Equation

15

k ¢ . 3 e P,
Sketch the graph of the conic given by r 3 — 2cos 6

Solution  To determine the type of conic, rewrite the equation as

15
P s Write original equation.
3 — 2cos 6 L
- 5 Divide numerator and
1 —(2/3)cos 0 denominator by 3.

So, the graph is an ellipse with ¢ = % You can sketch the upper half of the ellipse by
plotting points from # = O to @ = r, as shown in Figure 10.61. Then, using symmetry
with respect to the polar axis, you can sketch the lower half, _

For the ellipse in Figure 10.61, the major axis is horizontal and the vertices lie at
(15, 0) and (3, ). So, the length of the major axis is 2a = 18. To find the length of
the minor axis, you can use the equations ¢ = ¢/a and b2 = a2 — ¢2 to conclude

b*=a%— c? = a? — (ea)> = a’(1 — &?. Ellipse

Because e = %, you have
b= o1 - (3] = a5

which implies that b = /45 = 3./5. So, the length of the minor axis is 2b = 6./5.
A similar analysis for hyperbolas yields

b= c? — a? = (ea)? — a% = a%(e? - 1). Hyperbola

EXAMPLE 2  Sketching a Conic from Its Polar Equation

32

Sketch the graph of the polar equation r = 3 ¥ 5sing

Solution  Dividing the numerator and denominator by 3 produces

o 3213
1+ (5/3) sin 6

Because e = % > 1, the graph is a hyperbola. Because d = 35—2, the directrix is the line
y= 35—2 The transverse axis of the hyperbola lies on the line § = /2, and the vertices
occur at

T 3
(r,0) = (4, 2) and (r, 0) = (—16, : )
Because the length of the transverse axis is 12, you can see that a = 6. To find b, write
5 2
b2=qa%e?— 1) = 62[(§> - 1] = 64.

Therefore, b = 8. Finally, you can usc g and b to determine the asymptotes of the
hyperbola and obtain the sketch shown in Figure 10.62. =
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Kepler formulated his three laws from the
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the orbit of Mars.
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Halley's
comet

Figure 10.63
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Kepler’s Laws

Kepler’s Laws, named after the German astronomer Johannes Kepler, can be used to
describe the orbits of the planets about the sun.

1. Bach planet moves in an elliptical orbit with the sun as a focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal
times.

3. The square of the period is proportional to the cube of the mean distance between
the planet and the sun.*

Although Kepler derived these laws empirically, they were later validated by Newton.
In fact, Newton was able to show that each law can be deduced from a set of
universal laws of motion and gravitation that govern the movement of all heavenly
bodies, including comets and satellites. This is shown in the next example,
involving the comet named after the English mathematician and physicist Edmund
Halley (1656-1742).

EXAMPLE 3 Halley’s Comet

Halley’s comet has an elliptical orbit with the sun at one focus and has an eccentricity
of e ~ 0.967. The length of the major axis of the orbit is approximately 35.88
astronomical units. (An astronomical unit is defined to be the mean distance between
Earth and the sun, 93 million miles.) Find a polar equation for the orbit. How close does
Halley’s comet come to the sun?

Solution Using a vertical axis, you can choose an equation of the form

ed

"T0 + esin0)

Because the vertices of the ellipse occur when 6 = /2 and 6 = 37/2, you can
determine the length of the major axis to be the sum of the r-values of the vertices, as
shown in Figure 10.63. That is,

0y = _0:967d 0.967d
=15 0967 1 - 0967
35.88 = 27.79d. 2q = 35.88

So, d =~ 1.204 and ed =~ (0.967)(1.204) =~ 1.164. Using this value in the equation
produces

1.164

T 1+ 0967sin 6

where 7 is measured in astronomical units. To find the closest point to the sun (the
focus), you can write ¢ = ea =~ (0.967)(17.94) ~ 17.35. Because c is the distance
between the focus and the center, the closest point is
a—c=1794 —17.35
=~ 0.59 AU
ol 55,000,000 miles —

* If Earth is used as a reference with a period of 1 year and a distance of 1 astronomical unit,
the proportionality constant is 1. For example, because Mars has a mean distance to the sun of
D = 1.524 AU, its period P is given by D> = P2 So, the period for Mars is P = 1.88.



752 CHAPTER 10

Apollo
Figure 10.65

Conics, Parametric Equations, and Polar Coordinates

Kepler’s Second Law states that as a planet moves about the sun, a ray from the
sun to the planet sweeps out equal areas in equal times. This law can also be applied
to comets or asteroids with elliptical orbits. For example, Figure 10.64 shows the orbit
of the asteroid Apollo about the sun. Applying Kepler’s Second Law to this asteroid,
you know that the closer it is to the sun, the greater its velocity, because a short ray
must be moving quickly to sweep out as much area as a long ray.

(DWW

A ray from the sun to the asteroid sweeps out equal areas in equal times.
Figure 10.64

EXAMPLE 4 The Asteroid Apollo
R

The asteroid Apollo has a period of 661 Earth days, and its orbit is approximated by
the ellipse

| 9
14+ (5/9) cos6 9+ 5cos 6

r

where r is measured in astronomical units. How long does it take Apollo to move from
the position given by 6 = — /2 to § = /2, as shown in Figure 10.65?

Solution  Begin by finding the area swept out as 6 increases from — 7/2 to 7/2.

1 B
A= 5 f r2do Formula for area of a polar graph

o

/2 - 5
-3 y) e
2)_ 2 \9+ 5cos 0

Using the substitution u = tan(6/2), as discussed in Section 8.6, you obtain

/2
81 —5sin f 18 V56 tan(0/2) /
+ arctan
O+ 5cos0 /56 14

Because the major axis of the ellipse has length 2a = 81/28 and the eccentricity is
e = 5/9, you can determine that b = a/1 — ¢ = 9/./56. So, the area of the ellipse
is

112

=~ (.90429.
—/2

Area of ellipse = 7ab = W(QXL) =~ 5.46507.

56/\ /56
Because the time required to complete the orbit is 661 days, you can apply Kepler’s
Second Law to conclude that the time ¢ required to move from the position § = — /2

to 8 = 7/2 is given by
¢t _ area of elliptical segment _ 0.90429

661 area of ellipse 5.46507

which implies that ¢ = 109 days. m———
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Exercises for Section 10.6

H“' Graphical Reasoning In Exercises 1-4, use a graphing
utility to graph the polar equation when (a) ¢ = 1, (b) ¢ = 0.5,
and (c) e = 1.5, Identify the conic.

2e 2e
L'_I_+.f_:'cos.(‘:1 2.:——,_“"_059
2¢ e
i s T—————— s ————
3 | — esinfl ! I +esinf

{:‘P' 5. Writing Consider the polar equation

4

" T fesing

(a) Use a graphing utility to graph the equation for ¢ = 0.1,
e =025, ¢=0.5, e=0.75 and e = 0.9. Identify the
conic and discuss the change in its shape as ¢ — 1~ and
e — 0%,

(b) Use a graphing utility to graph the equation for e = 1.
Identify the conic.

(c) Use a graphing utility to graph the equation for ¢ = 1.1,
e =15, and e = 2. Identify the conic and discuss the
change in its shape as ¢ — 17 and ¢ — oo.

6. Consider the polar equation

__ @&
1 —04cos @

¥

(a) Identify the conic without graphing the equation.
(b) Without graphing the following polar equations, describe
how each differs from the polar equation above.

_ 4 . 4
1 +04cos® ' 1—04sind

.
(c) Verify the results of part (b) graphically.

In Exercises 7-12, match the polar equation with the correct
graph. [The graphs are labeled (a), (b), (c), (d), (e), and .}

(b)

Polar Equations of Conics and Kepler’s Laws 753

See www.CalcChat.com for worked-out solutions to odd-numbered exercises,

®)

6 2
7' e A — =
4 1 — cos 0 8.7 2 — cos f)
3 2
i ok 1.:7= T T gind
6 2
u'r_Z—sin(? lz'r_2+3c056‘

In Exercises 13-22, find the eccentricity and the distance from
the pole to the directrix of the conic. Then sketch and identify
the graph. Use a graphing utility to confirm your results.

13'r:1—__slin¢9
14.r=1—+6cm
15.r=2—_|_6W6
16.r=5—+%—9

17. (2 + sin ) = 4
18. r(3 —2cos §) =6

19.r=-_|+STOSa
20.r=3—+—76Ké
21.r=2—+2si—n0
22.r=1—_'_ﬁ—(9

H“’ In Exercises 23-26, use a graphing utility to graph the polar

equation. Identify the graph.

3

Bor= i owne
=3

W= A in g
-1

255 "1 —cose

26. r = -

2+ 3sin6
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In Exercises 27-30, use a graphing utility to graph the conic.
Describe how the graph differs from that in the indicated
exercise.

3 ipi== I — sin(@ — w/4)

(See Exercise 13.)

6 .
28. r = 1T cos(8 — WE (See Exercise 14.)
6 .
29, r = TC‘)S(9+—7T/6) (See Exercise 15.)
30. » =6 (See Exercise 20.)

T 3+ 7sin(6 + 27/3)
31. Write the equation for the ellipse rotated 7/4 radian clockwise
from the ellipse

faes 5
! 5+ 3cosd

32. Write the equation for the parabola rotated #/6 radian
counterclockwise from the parabola

2

"T1+sne

In Exercises 33—44, find a polar equation for the conic with its
focus at the pole. (For convenience, the equation for the direc-
trix is given in rectangular form.)

Conic Eccentricity Directrix
33. Parabola e=1 x=-1
34. Parabola e=1 y=1
35. Ellipse e=1 y=1
36. Ellipse e=2 y=-2
37. Hyperbola e=2 x=1
38. Hyperbola e= % x=-1

Conic Vertex or Vertices
39. Parabola (1. —g)
40. Parabola (5, m
41. Ellipse (2,0), (8, m
42. Ellipse (2, g) <4, %”)

37 37

43. Hyperbola (1, 3 ), <9, 2)
44. Hyperbola (2,0), (10,0)

Conics, Parametric Equations, and Polar Coordinates

Writing About Concepts

45. Classify the conics by their eccentricities.
46. Explain how the graph of each conic differs from the graph
4
= sing
4 4
T ® = e
4 4
(C)r_1+cos0 (d)r_l—sin(o—fn'/4)
47. Identify each conic.
5 5
(a)r_1—200s0 (b)r_IO—sinO
5 5
(C)r_3—30050 (d)r_1—3sin(0—7r/4)
48. Describe what happens to the distance between the directrix
and the center of an ellipse if the foci remain fixed and e
approaches 0.

2

49. Show that the polar equation forz—z + # =1is
»2
r2= TCOSZO i Ellipse
. ¥y )
50. Show that the polar equation for 2 B lis
r? = Hyperbola

1 — e?cos28

In Exercises 51-54, use the results of Exercises 49 and 50 to
write the polar form of the equation of the conic.

51. Ellipse: focus at (4, 0); vertices at (5, 0), (5, m)
52. Hyperbola: focus at (5, 0); vertices at (4, 0), (4, )

2y _
3. 5 - 1e=1
2
54. 7+ =

H" In Exercises 55 and 56, use the integration capabilities of a

graphing utility to approximate to two decimal places the area
of the region bounded by the graph of the polar equation.

3
2 = cosf
2

3—2sind

55. r =

56. r =
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57. Explorer 18 On November 27, 1963, the United States lﬂf" 63. Planetary Motion In Exercise 61, the polar equation for the
elliptical orbit of Pluto was found. Use the equation and a
computer algebra system to perform each of the following.

launched Explorer 18. Its low and high points above the surface
of Earth were approximately 119 miles and 123,000 miles (see
figure). The center of Earth is the focus of the orbit. Find the
polar equation for the orbit and find the distance between the
surface of Earth and the satellite when 6§ = 60°. (Assume that
the radius of Earth is 4000 miles.)

90°
Explorer 18

Not drawn to scale
58. Planetary Motion The planets travel in elliptical orbits with

the sun as a focus, as shown in the figure.

n
2
Planet

<

Not drawn (o scale

(a) Show that the polar equation of the orbit is given by

_ (- &?)a
1 —ecos @

where e is the eccentricity.

(b) Show that the minimum distance (perihelion) from the sun
to the planet is » = a(1 — ¢) and the maximum distance
(aphelion) is r = a(l + e).

In Exercises 59—62, use Exercise 58 to find the polar equation of
the elliptical orbit of the planet, and the perihelion and aphelion
distances.

59. Earth a = 1.496 x 108 kilometers
e = 0.0167

60. Saturn a = 1.427 x 10° kilometers
e = 0.0542

61. Pluto a = 5.906 x 10° kilometers
e = 0.2488

62. Mercury a = 5.791 x 107 kilometers
e = 0.2056

(@)

(b)

©

Approximate the area swept out by a ray from the sun to the
planet as 8 increases from O to 77/9. Use this result to deter-
mine the number of years for the planet to move through
this arc if the period of one revolution around the sun is 248
years.

By trial and error, approximate the angle o such that the
area swept out by a ray from the sun to the planet as 6
increases from 7r to « equals the area found in part (a) (see
figure). Does the ray sweep through a larger or smaller
angle than in part (a) to generate the same area? Why is this
the case?

Approximate the distances the planet traveled in parts (a)
and (b). Use these distances to approximate the average
number of kilometers per year the planet traveled in the two
cases.

64. Comet Hale-Bopp The comet Hale-Bopp has an elliptical
orbit with the sun at one focus and has an eccentricity
of e = 0.995. The length of the major axis of the orbit is
approximately 250 astronomical units.

(@
(b)
()

Find the length of its minor axis.
Find a polar equation for the orbit.

Find the perihelion and aphelion distances.

In Exercises 65 and 66, let r, represent the distance from the
focus to the nearest vertex, and let r; represent the distance

from th

e focus to the farthest vertex.

65. Show that the eccentricity of an ellipse can be written as

e =

T % 1+e
I 9 Then show that =+ = ——.
r,t+r ro 1—e

66. Show that the eccentricity of a hyperbola can be written as

_n

+ r +1
—ro. Then show that L = e—.
ry =y v, e—1

In Exercises 67 and 68, show that the graphs of the given equa-
tions intersect at right angles.

67. r =

68. r =

__ed
1 — sin 6
=08 _ 5 i
1+ cos @ d 1 —cos@

__ed_ and r
1+ sinéd



756 CHAPTER 10

Review Exercises for Chapter

In Exercises 1-6, match the equation with the correct graph.
[The graphs are labeled (a), (b), (c), (d), (), and (f).]

() ) y

(©) (d) y
XY/
SRR R
-4 2 4 2 4
FARN

(e ® y

1. 4x2+y2=4 2. 4x2 —y2=4
3. y2=—4x 4. y2—4x2 =4
5. x4+ 4y2=4 6. x2 =4y

In Exercises 7-12, analyze the equation and sketch its graph.
Use a graphing utility to confirm your results.

7. 16x2 + 16y2 — 16x + 24y — 3 =0

8 y2- 12y —8x+20=0

9. 3x2— 22+ 24x+ 12y + 24 =0

10. 4x2 4+ y2 - 16x+ 15=0

11, 322+ 2y2 — 12x + 12y + 29 = 0

12, 4x2 —4y? - 4x + 8y — 11 =0

In Exercises 13 and 14, find an equation of the parabola.

13. Vertex: (0, 2); directrix: x = —3
14. Vertex: (4,2); focus: (4, 0)

In Exercises 15 and 16, find an equation of the ellipse.

15, Vertices: (=3, 0), (7, 0); foci: (0, 0), (4, 0)
16. Center: (0, 0); solution points: (1, 2), (2, 0)

Conics, Parametric Equations, and Polar Coordinates

See www.CalcChat.com for worked-out solutions to odd-numbered exercises

10

In Exercises 17 and 18, find an equation of the hyperbola.

17. Vertices: (x4, 0); foci: (+6,0)
18. Foci: (0, £8); asymptotes: y = +4x

P‘fﬂ In Exercises 19 and 20, use a graphing utility to approximate
the perimeter of the ellipse.

2

2 Y
19.9+4—1
x2 y2
LS =
2 4 25 1

21. Aline is tangent to the parabola y = x2 — 2x + 2 and perpen-
dicular to the line y = x — 2. Find the equation of the line.

22. A line is tangent to the parabola 3x? + y = x — 6 and perpen-
dicular to the line 2x + y = 5. Find the equation of the line.

23. Satellite Antenna A cross section of a large parabolic antenna
is modeled by the graph of

—100 < x < 100.

The receiving and transmitting equipment is positioned at the
focus.

(a) Find the coordinates of the focus.
(b) Find the surface area of the antenna.

24, Fire Truck Consider a fire truck with a water tank 16 feet
long whose vertical cross sections are ellipses modeled by the
equation

2

= +

16 9

(a) Find the volume of the tank.

(b) Find the force on the end of the tank when it is full of water.
(The density of water is 62.4 pounds per cubic foot.)

(c) Find the depth of the water in the tank if it is % full (by
volume) and the truck is on level ground.

(d) Approximate the tank’s surface area.

In Exercises 25-30, sketch the curve represented by the
parametric equations (indicate the orientation of the curve),
and write the corresponding rectangular equation by
eliminating the parameter.

25, x=1+4t, y=2-3¢

26. x=t+4, y=1¢2

27. x=6cos 6, y=6sin 0

28. x =3 +3cos 6, y=2+ 5sin @

29. x=2+sech, y=3+ tan @

30. x =5sin*0, y = Scos® @
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In Exercises 31-34, find a parametric representation of the line ’Civ In Exercises 51 and 52, (a) use a graphing utility to graph the

or conic.

31. Line: passes through (—2, 6) and (3, 2)
32, Circle: center at (5, 3); radius 2

33. Ellipse: center at (— 3, 4); horizontal major axis of length 8 and
minor axis of length 6

34. Hyperbola: vertices at (0, £4); foci at (0, +5)

ldF’ 35. Rotary Engine The rotary engine was developed by Felix

Wankel in the 1950s. It features a rotor, which is a modified
equilateral triangle. The rotor moves in a chamber that, in two
dimensions, is an epitrochoid. Use a graphing utility to graph
the chamber modeled by the parametric equations.

x =cos36+ S5cos @
and
y = sin 360 + 5sin 6.
36. Serpentine Curve Consider the parametric equations
x=2cotf@andy =4sinfcos 6,0 < 0 < .
52{‘7 (a) Use a graphing utility to graph the curve.

(b) Eliminate the parameter to show that the rectangular
equation of the serpentine curve is (4 + x2)y = 8x.

In Exercises 37-46, (a) find dy/dx and all points of horizontal
tangency, (b) eliminate the parameter where possible, and
(c) sketch the curve represented by the parametric equations.
37.x=1+4t y=2-73t

38. x=t+4, y=1¢

39.x=%, =2t+3
40.x=%, y =1
41, x = L 42, x=2r—1
2t + 1
1 1
T YT Py
43. x =3 + 2cos 0 44. x = 6¢cos 6
y=2+5sin6 y = 6sin 6
45, x = cos’ 0 46. x = ¢'
y = 4sin? 6 y=e¢!

In Exercises 47-50, find all points (if any) of horizontal and
vertical tangency to the curve. Use a graphing utility to confirm
your results.

47. x=4—1t, y=1¢

48. x=t+2, y=0—-2t

49. x =2+ 2sinf, y=1+cosf

50. x=2—2cos 6, y=2sin20

curve represented by the parametric equations, (b) use a
graphing utility to find dx/d#, dy[d®, and dy/dx for 0 = w6,
and (c) use a graphing utility to graph the tangent line to the
curve when 0 = /6.

51. x =cot @
y = sin 28

52. x =20 —sinf
y=2—cos@

Arc Length  In Exercises 53 and 54, find the arc length of the
curve on the given interval.

53. x = r(cos 0 + Osin 6) 54. x =6cos 6
y = r{sin 8 — O cos 6) y = 65sin 6
067 06w

Surface Area In Exercises 55 and 56, find the area of the
surface generated by revolving the curve about (a) the x-axis
and (b) the y-axis.
55. x=1t y=3t, 0=<t<?2

56. x =2cosf, y=2sinf, 0<0<

w1

Area In Exercises 57 and 58, find the area of the region.

57. x = 3sin @ 58. x = 2cos 8
y =2cos 0 y = sin 8
T T
—— <0< = <6<
2_0_2 06w
y y
4 3
3 2.
S U . 3-2-1 1 1 23
-3 -2-1, 1 2 3 =
_2. _3

In Exercises 59-62, plot the point in polar coordinates and find
the corresponding rectangular coordinates of the point.

59. (3—721)
( ’11’7T>
(
(-

61. (</3,1.56)

62. (—2, —2.45)

In Exercises 63 and 64, the rectangular coordinates of a point
are given. Plot the point and find two sets of polar coordinates
of the point for 0 < 8 < 27,

63. (4, —4)

64. (—1,3)
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In Exercises 65-72, convert the polar equation to rectangular In Exercises 99-102, find the area of the region.
form. .
99. Interior of r = 2 + cos 0
65. r =3 cos § 66. r =10 100. Interior of 7 = 5(1 — sin 6)
67. r = —2(1 + cos 6) 68. r = ﬁ 101. Interior of 2 = 4 sin 20
cos 102. Common interior of r = 4 cos @and r = 2
69. r? = cos 26 70. r =4 sec(@ - 7—T)
3 HU' In Exercises 103-106, use a graphing utility to graph the polar

1. r = 4 cos 26 sec 6 7. 0 = 3w equ.atlon. Set up aI.l mtegrfll for ﬁn(?l.ng the area of ‘the gl.v.en
4 region and use the integration capabilities of a graphing utility
to approximate the integral accurate to two decimal places.

In Exercises 73-76, convert the rectangular equation to polar 103. Tnterior of r = sin § cos? §

form.
104, Interior of » = 4 sin 360
2 = 2 _ -
73. (2 +y)? = ax?y 74. X2 +y 4x=0 105. Common interior of » = 3 and 2 = 18 sin 26
2
75. x2+ y2= g2 (arctan X) 76. (x2+ y?) (arctan X)2 = g2 106. Region bounded by the polar axis and r = e®for0 < § < 7
x X

In Exercises 107 and 108, find the length of the curve over the

In Exercises 77-88, sketch a graph of the polar equation. given interval.

77. r=4 78. 0=~ Polar Equation Interval
= 107. r = a{l — cos 6) 0<o0<n
79. r = —sec 0 80. r=3csc - .
81. r = —2(1 + cos 6) 82. r =3 — 4cos 6 108. r = acos 20 T,sb0s7
83 r=4—-3cos @ 84. r =20
85. r= —3cos 26 86. r = cos 50 FIF’ In Exercises 109 and 110, write an integral that represents the
87. 12 = 45in228 88. 2 = cos 26 area of the surface formed by revolving the curve about the
given line. Use a graphing utility to approximate the integral.
HV In Exercises 89-92, use a graphing utility to graph the polar Polar Equration Interval Axis of Revolution
equation. T
109. r =1+ 4cos § 0<0c< 5 Polar axis
89.r=m 90.r=25in000s20
110, r = 2sin 6 0<o<” o=2
91. r = 4 cos 20 sec 0 92. r = 4(sec 0 — cos 6) 2 2
P In Exercises 93 and 94, (a) find the tangents at the pole, (b) find In Exercises 111-116, sketch and identify the graph. Use a
all points of vertical and horizontal tangency, and (c) use a graphing utility to confirm your results.
g‘raphing utility to graph the polar equation and draw a tangent 2 - 2
line to the graph for 6 = /6. 111. r = = 12, r= CRERT
93. r=1—2cos @ 94, r2 = 45in 20 {3 6 1 4
> 3 2cos 0 T S T 3sine
95. Find the angle between the circle » = 3 sin 6 and the limagon 4 8
r = 4 — 5sin 6 at the point of intersection (3/2, 7/6). 115, r = — 116. r = ——
2 —3sinf 2—5cosd

96. True or False? There is a unique polar coordinate represen-

tation f h point in the plane. Explain. .
aton for each point in the plane. Explain In Exercises 117-122, find a polar equation for the line or conic

. with its focus at the pole.
In Exercises 97 and 98, show that the graphs of the polar

equations are orthogonal at the points of intersection. Use a 117. Circle 118. Line
graphing utility to confirm your results graphically. Center: (5, 7/2) Solution point: (0, 0)
97. r=1+ cos 6 98. r = asin 6 Solution point: (0, 0) Slope: /3
r=1-—cos 8 rF=aqacos @ 119. Parabola 120. Parabola
Vertex: (2, ) Vertex: (2, /2)
121. Ellipse 122. Hyperbola

Vertices: (5,0), (1, m) Vertices: (1,0), (7,0)
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1. Consider the parabola x> = 4y and the focal chord y = %x + 1.
(a) Sketch the graph of the parabola and the focal chord.

(b) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect at right angles.

(c) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect on the directrix of the parabola.

. Consider the parabola x> = 4py and one of its focal chords.

(a) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect at right angles.

(b) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect on the directrix of the parabola.

. Prove Theorem 10.2, Reflective Property of a Parabola, as shown
in the figure.

with foci F| and F,, as shown in the figure. Let T be the tangent
line at a point M on the hyperbola. Show that incoming rays of
light aimed at one focus are reflected by a hyperbolic mirror
toward the other focus.

Figure for 4 Figure for 5

. Consider a circle of radius a tangent to the y-axis and the line
x = 2a, as shown in the figure. Let A be the point where the seg-
ment OB intersects the circle. The cissoid of Diocles consists of
all points P such that OP = AB.

(a) Find a polar equation of the cissoid.

(b) Find a set of parametric equations for the cissoid that does
not contain trigonometric functions.

(c) Find a rectangular equation of the cissoid.

6. Consider the region bounded by the ellipse x2/a? + y2/b* = 1,

with eccentricity e = ¢/a.
(a) Show that the area of the region is mwab.

(b) Show that the solid (oblate spheroid) generated by revolving
the region about the minor axis of the ellipse has a volume
V = 472b/3 and a surface area of

2
= 2qa? + ,n.(b_) 1n<1ﬂ>.
e 1—e

(c) Show that the solid (prolate spheroid) generated by
revolving the region about the major axis of the ellipse has a
volume of V = 4mab?/3 and a surface area of

S =2mb? + 277(%[2) arcsin e.

. The curve given by the parametric equations

(1 —12
nd 50 =7

is called a strophoid.

(a) Find a rectangular equation of the strophoid.

(b) Find a polar equation of the strophoid.

(c) Sketch a graph of the strophoid.

(d) Find the equations of the two tangent lines at the origin.

(e) Find the points on the graph where the tangent lines are
horizontal.

. Find a rectangular equation of the portion of the cycloid given by

the parametric equations x = a(f — sin 6) and y = a(l1 — cos 6),
0 < 0 £ qr, as shown in the figure.

b/
i

2a

9. Consider the cornu spiral given by

() = L ’cos<%uz> de and y() = L 'sin<”7“2> du

F‘P (a) Use a graphing utility to graph the spiral over the interval

—m<ts<m

(b) Show that the cornu spiral is symmetric with respect to the
origin.

(c) Find the length of the cornu spiral from ¢ = O to t = a. What
is the length of the spiral fromt = —wtot = 77
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10. A particle is moving along the path described by the parametric 15. An air traffic controller spots two planes at the same altitude
equations x = 1/tand y = sint/t,for 1 < ¢ < oo, as shown in flying toward each other (see figure). Their flight paths are 20°
the figure. Find the length of this path. and 315°. One plane is 150 miles from point P with a speed of

¥y 375 miles per hour. The other is 190 miles from point P with a

speed of 450 miles per hour.

T
=
-

11. Let a and b be positive constants. Find the area of the region in
the first quadrant bounded by the graph of the polar equation

ab T

" (asin 0 + bcos 6) s (a) Find parametric equations for the path of each plane where
t is the time in hours, with # = O corresponding to the time

12. Consider the right triangle shown in the figure. at which the air traffic controller spots the planes.
(a) Show that the area of the triangle is A(a) = 1 asec2 6 do. (b) Use the result of part (a) to write the distance between the

2o planes as a function of t.

a Use a graphing utility to graph the function in part (b).

b) Show that tan @ = 2 646, © i
(b) Show that tan o fo L When will the distance between the planes be minimum? If
(c) Use part (b) to derive the formula for the derivative of the the Planes must keep a separation of at least 3 miles, is the

tangent function. requirement met?

de' 16. Use a graphing utility to graph the curve shown below. The
curve is given by

6
— cosﬂﬁz 0 + si 5_.
r=e cos 4 sin D

Over what interval must 6 vary to produce the curve?

Figure for 12 Figure for 13

13. Determine the polar equation of the set of all points (r, 6), the
product of whose distances from the points (1, 0) and (—1, 0)
is equal to 1, as shown in the figure.

14. Four dogs are located at the corners of a square with sides of
length d. The dogs all move counterclockwise at the same
speed directly toward the next dog, as shown in the figure. Find
the polar equation of a dog’s path as it spirals toward the center
of the square.

FOR FURTHER INFORMATION For more information on this
curve, see the article “A Study in Step Size” by Temple H. Fay
in Mathematics Magazine. To view this article, go to the website
www.matharticles.com.

HU' 17. Use a graphing utility to graph the polar equation
d r=cos560 + ncosf, for 0 < 6 < 7 and for the integers
n = —5ton = 5. What values of n produce the “heart” portion
of the curve? What values of n produce the “bell” portion?
(This curve, created by Michael W. Chamberlin, appeared in
The College Mathematics Journal.)




