4.1  Antiderivatives and Indefinite Integrals

If you were given 
[image: image129.emf] and asked what function  
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 had this derivative, what would you say?


[image: image3.wmf](

)

fx

 is called the _____________________________ of 
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The symbol  
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 is the   _________________________________________________________.

The term _________________________________ is a synonym for ___________________________.

We can get formulas for antiderivatives by reversing the differentiation rules:

	                  Differentiation Rules
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	                 Integration Rules
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	Properties of Indefinite Integrals
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Note that 
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Ex  
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There isn’t a product rule or a quotient rule for antiderivatives so you must simplify first.
Ex.  
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Ex. 
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Ex. Solve the differential equation: 
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Ex. Solve the differential equation: 
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______________________________________________________________________________________

Ex. A particle moves along the  x-axis at a velocity of  
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  At time  t = 2.

       its position is  x = 3.

(a) Find the acceleration function.

(b) Find the position function.

	Homework:  P. 255: 15 – 43 odd, 57, 59, 62 



4.5 Integration Using u-Substitution
When we differentiated composite functions, we used the Chain Rule.  The reverse process is

called u-substitution.

Ex. 
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Ex. 
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Ex. 
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Ex. 
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Ex. 
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Ex. Solve the differential equation 
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	Homework: P. 304: 7-23 odds, 29,35,57
The book will slip in some “old” problems like the problems in 4.1 that don’t need

u-substitution so watch out for those.




4.2 Integration and Area under a Curve 
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A car is traveling so that its speed is never decreasing during a 12-second interval.  The speed at various moments in time is listed in the table below.

	Time in Seconds
	 0
	 3
	 6
	 9
	12

	Speed in ft/sec
	30
	37
	45
	54
	65


(a)  Sketch a possible graph for this function.

(b) Estimate the distance traveled by the car during the 12 seconds by finding the areas of 
     four rectangles drawn at the heights of the left endpoints.  This is called a left Riemann sum.

(c) Estimate the distance traveled by the car during the 12 seconds by finding the areas of 
     four rectangles drawn at the heights of the right endpoints.  This is called a right Riemann sum.

(d) Estimate the distance traveled by the car during the 12 seconds by finding the areas of 
      two rectangles drawn at the heights of the midpoints.  This is called a midpoint Riemann sum.

Ex. Given the function 
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, estimate the area bounded by the graph of the curve and

       the x-axis on [0, 2] by using:

[image: image123.emf](a) a left Riemann sum with  n = 4 equal subintervals

(b) a right Riemann sum with  n = 4 equal subintervals

(c) a midpoint Riemann sum with  n = 4 equal subintervals

	Homework:  Worksheet 




4.3  Riemann Sums and Definite Integrals
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To estimate the area bounded by the graph of 
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)

fx

 and the  x-axis between the vertical lines  x = a  and  x = b, partition the area and divide it into subintervals.  Yesterday we drew rectangles with the height at the left endpoint or the right endpoint or at the midpoint of the interval.  Today we will draw rectangles at some general point within the subinterval, not necessarily at the left endpoint or the right endpoint or at the midpoint of the interval.
.

Let 
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 be any point in the kth subinterval.

Draw a rectangle with a height of 
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Area of Rectangle = 

Sum of all the Rectangles = 

This sum is called a __________________________.

How can we get the exact area under the curve?
	    Area = 




	Definition of a Definite Integral:
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  or   
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	Area bounded by 
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 and the x-axis on [a, b] =
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	Properties of Definite Integrals:
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If  c lies between  a  and  b, then 
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Note: 
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_____________________________________________________________________________________
Ex. Sketch and evaluate by using a geometric formula.
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     (b) 
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(c) 
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     (d) 
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Ex. Given: 
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(a) 
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(b) 
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	Homework:  P. 277: 13 – 43 odd, 30, 32, 46, 47, 49




4.4  Fundamental Theorem of Calculus
	Fundamental Theorem of Calculus:  
[image: image55.wmf](

)

(

)

(

)

(

)

xb

xa

b

a

fxdxfxfbfa

=

=

¢

==-

éù

ëû

ò




Ex. 
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Ex. 
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Ex. 
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Ex. 
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_________________________________________________________________________________________

Ex. Find the area bounded by the graph of 
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, the  x-axis, and the vertical lines
      x = 0 and  x = 2.

	Homework: P. 293: 1 – 35 odd,39
                     


4.5 u-Substitution with Definite Integrals
Ex. 
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Ex. 
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Ex. 
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Ex. Find the area bounded by the graph of 
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 and the  x-axis on the interval [0, 2].


__________________________________________________________________________________

Ex. Water is being pumped into a tank at a rate given by 
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.  A table of values of 
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	t (min.)
	0
	5
	9
	15
	20
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 (gal/min)
	14
	18
	20
	27
	32


(a) Use data from the table and four subintervals to find a left Riemann sum to 

     approximate 
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(b) Use data from the table and four subintervals to find a right Riemann sum to 

     approximate 
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	Homework:  Worksheet 




4.5 Another Kind of Substitution
Sometimes the u-substitution method we have learned doesn’t work, and we need to do something different to integrate.
Ex. 
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Ex. 
[image: image72.wmf]5

1

21

x

dx

x

=

-

ó

ô

õ


__________________________________________________________________________________

Ex. 
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	If a function  f  is even, then  f  has                          If a function  f  is odd, then  f  has

y-axis symmetry so 
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Ex. Given: 
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        Ex. Given: 
[image: image78.wmf](

)

fx

 is odd and 
[image: image79.wmf](

)

5

0

3.

fxdx

=

ò

  

Find: 





          Find:

(a) 
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	Homework:  Worksheet 




Fundamental Theorem of Calculus
Given 
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Method 1: Integrate 
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, and use the initial condition to find  C.  Then write


     the particular solution, and use your particular solution to find 
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Method 2: Use the Fundamental Theorem of Calculus: 
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Sometimes there is no antiderivative so we must use Method 2 and our graphing calculator.

Ex. 
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What if you had been given 
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Ex.  The graph of  
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        semicircle as shown on the right.  Given that 
[image: image95.wmf](

)

25

f

-=

, 

        find:
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Graph of  
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Ex.  The graph of 
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 is shown.  Use the figure and the

        fact that 
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        (a) 
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        (c) 
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        Then sketch the graph of  f. 

________________________________________________________________________________

Ex. A pizza with a temperature of 95°C is put into a 25°C room when  t = 0.  The pizza’s

      temperature is decreasing at a rate of  
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 per minute.  Estimate the pizza’s 

      temperature when  t = 5 minutes.

	Homework:  Worksheet 




Fundamental Theorem of Calculus, Day 2
Ex. If 
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Ex. If 
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Ex. 
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      Evaluate: 
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	Homework:  Worksheet 




AVERAGE VALUE OF A CONTINUOUS FUNCTION

	Mean Value Theorem for Integrals
If  f  is continuous on [a, b], then there exists a number  c  in  [a, b] such that   
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The geometric interpretation of the Mean Value Theorem for Integrals is that, for a positive function  f, there is a number  c  between  a and  b such that the rectangle with base  [a, b] and height 
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 has the same area as the region under the graph of  f  from  a  to  b.  In other words,  c  is the value of  x on  [a, b] where you can build a “perfect” rectangle---a rectangle whose area is exactly equal to the area of the  region under the graph of  f  from  a  to  b.  
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 = height of the “perfect” rectangle
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     Area of “perfect” rectangle = 

The value  
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 is called the average value of the function  f   and is defined by:
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__________________________________________________________________________________________
Ex. Given  
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 and the interval  
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(a) Find the average value of  f  on the given interval.

(b) Find  c  such that  
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(c) Sketch the graph of  f  and a rectangle whose area is the same as the area

     under the graph of  f.

__________________________________________________________________________________________
Ex. The table below gives values of a continuous function  f.  Use a left Riemann sum with three

       subintervals and values from the table to estimate the average value of  f  on [5, 17].

	x
	5
	9
	12
	17
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	23
	29
	36
	27


Ex. A study suggests that between the hours of 1:00 PM and 4:00 PM on a normal weekday, the speed of the 
      traffic on a certain freeway exit is modeled by the  formula 
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 where the speed is 
      measured in kilometers per hour and  t  is the number of hours past noon.  Compute the average speed of the 
      traffic between the hours of 1:00 PM and 4:00 PM.  (Use your calculator, and give your answer correct to

      three decimal places.)
__________________________________________________________________________________________
Ex.  Suppose that during a typical winter day in Minneapolis, the temperature (in degrees Celsius)  x  hours after 
        midnight is shown in the figure below.  

(a) Use a midpoint Riemann sum with four equal subintervals to approximate the average  temperature over the 
      time period from 4:00 AM to 8 PM.

(b) Use your answer to (a) to estimate the time when the average temperature occurred.


__________________________________________________________________________________________
Ex.  Find the average value of the function on the given interval without integrating.  (Hint: Graph and use 

        Geometry.)
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