Graphing Parametric Equations and Eliminating the Parameter

Ex. Make a table of values and sketch the curve, indicating the direction of your graph.  Then 

       eliminate the parameter.
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	Homework: Worksheet



Parametric Equations and Calculus

If a smooth curve  C  is given by the equations  
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then the slope of  C  at the point 
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and the second derivative is given by  
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Ex. 1 (Noncalculator)

Given the parametric equations
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Ex. 2 (Noncalculator)  

Given  the parametric equations
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, write an equation of the tangent line to the curve at the point where  
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Ex 3 (Noncalculator)
Find all points of horizontal and vertical tangency given the parametric equations
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Earlier in the year we learned to find the arc length of a curve  C  given by 
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If  C  is represented by the parametric equations 
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then 
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	Length of arc for parametric graphs is 
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Note that the formula works when the curve does not intersect itself on the interval 
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and the curve must be smooth.




Ex. 4 (Noncalculator)

Set up an integral expression for the arc length of the curve given by the parametric

equations 
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  Do not evaluate.
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Parametric Equations, Vectors, and Calculus – Terms and Formulas to Know

If a smooth curve  C  is given by the equations  
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 then the slope of  C  

at the point 
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, and the second derivative is given

by  
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_________________________________________________________________________________
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 , introduced above, is the rate at which the  x-coordinate is changing with respect to  t or the velocity of a particle in the horizontal direction.
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 , also introduced above, is the rate at which the  y-coordinate is changing with respect to  t  or the velocity of a particle in the vertical direction.
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 is the rate of change of  y with respect to  x  or the slope of the tangent line to the curve or 

the slope of the path of the particle.
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is the speed of the particle or the magnitude (length) of the velocity vector.
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 is the length of the arc for  
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Vectors - Motion Along a Curve, Day 1
(All of the examples are noncalculator.)
Ex. 1  A particle moves in the  xy-plane so that at any time  t, the position of the particle is given by    

         
[image: image37.wmf](

)

(

)

3243

25,2.

xtttyttt

=-=+


(a) Find the velocity vector when  t = 1.

(b) Find the acceleration vector when  t = 1.

__________________________________________________________________________________

How do you find the magnitude or length of a vector?

Position vector





[image: image104.emf]Magnitude of the position vector = 
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Velocity vector





[image: image105.emf]
Magnitude of the velocity vector = 
The magnitude of the velocity vector is called the speed of the object moving along the curve.
__________________________________________________________________________________

Acceleration vector
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Magnitude of the acceleration vector = 
__________________________________________________________________________________
Ex.2  A particle moves in the  xy-plane so that at any time  t, 
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         by  
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 Find the magnitude of the velocity vector when  t = 3.
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Ex. 3  A particle moves in the  xy-plane so that 
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          The path of the particle intersects the  x-axis twice.  Write an expression that represents the 

          distance traveled by the particle between the two  x-intercepts.  Do not evaluate.

__________________________________________________________________________________

We learned earlier in the year that a particle moving along a line is at rest when its velocity is zero.

If a particle is moving along a curve, the particle is at rest when its velocity vector = 
[image: image41.wmf]0,0.

 

Ex. 4  A particle moves in the  xy-plane so that at any time  t, the position of the particle is given 

          by 
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  For what value(s) of  t  is the 
          particle at rest?

__________________________________________________________________________________

Ex. 5  A particle moves in the xy-plane in such a way that its velocity vector is 
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34,85

ttt

-+

.  

          At  t = 0, the position of the particle is 
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  Find the position of the particle at  t = 1.
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Vectors, Motion Along a Curve, Day 2

Use your calculator on the following examples.

Ex. A particle moving along a curve in the  xy-plane has position  
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 at time  t  with  
[image: image46.wmf](

)

(

)

2

3

sin,cos.

dxdy

tt

dtdt

==

  At time  t = 2, the object is at the position ( 7, 4).

(a) Write the equation of the tangent line to the curve at the point where  t = 2.

 (a) Find the speed of the particle at  t = 2.

(c) For what value of  t, 
[image: image47.wmf]01,
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 does the tangent line to the curve have a slope of 4?  Find the acceleration 
     vector at this time.

(d) Find the position of the particle at time  t = 1.

	Homework: Worksheet and Polar Discovery Worksheet 



Polar Coordinates and Polar Graphs
Rectangular coordinates are in the form 
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Polar coordinates are in the form 
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Ex. 1  Graph the following polar coordinates:
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In Precalculus you learned that:
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so  x = 
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so  y = 
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so  r = 
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Ex. Convert 
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Ex. Convert 
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 to polar coordinates.

Ex. Convert the following equations to polar form.

(a)  y = 4





(b) 
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Ex. Convert the following equations to rectangular form, and sketch the graph.

(a) 
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                (b) 
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             (c) 
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To find the slope of a tangent line to a polar graph 
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__________________________________________________________________________________________Ex. Find 
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 and the slope of the graph of the polar curve at the given value of 
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Notes on Polar, Day 2 - Area Bounded by a Polar Curve
To find the area bounded by a polar curve, we need to start with the formula for the area of a sector of a circle.

Area of a Sector = 
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If 
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 is measured in radians, then

Area of a Sector = 
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Area of a Sector = 
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If we take a function 
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and partition it into equal subintervals, then the

radius of the ith subinterval = 
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Then the area of the region can be approximated by:
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To get the exact area, we can take the limit as the number of subintervals approaches infinity, so
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Then the Fundamental Theorem of Calculus allows us to evaluate this area by using a definite integral, so that
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	The area bounded by the polar curve  
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Ex. Sketch the graph of 
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and find the area bounded by the graph.  
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Ex. Sketch, and set up an integral expression to find the area of one petal of  
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Ex. Sketch, and set up an integral expression to find the area of one petal of  
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)

4cos2.

r

q

=


       Do not evaluate.
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Notes on Polar, Day 3
Ex. Sketch, and set up an integral expression to find the area inside the graph of 
[image: image83.wmf]3sin
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      outside the graph of 
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Ex. Sketch, and set up an integral expression to find the area of the common interior of  
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More on Polar Graphs
Use your graphing calculator on the following example.
Ex.  A curve is drawn in the xy-plane and is described by the equation in polar coordinates    
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, where  r is measured in meters and 
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 is measured in radians.   

(a) Sketch the graph of the curve.

      Note: On your TI-89, 
[image: image89.wmf]q

 is the green diamond function of the 

                carat key.

(b) Find the area bounded by the curve and the  x-axis.
(c) Find the angle 
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 that corresponds to the point on the curve with x-coordinate 
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      In function mode, let 
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        and 
[image: image93.wmf]21

y

=-

 and find the intersection

      or on the home screen of your TI89: solve
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(d) Find the value of 
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   What does your answer tell you about  r?

      What does it tell you about the curve?

(e) A particle is traveling along the polar curve given by 
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so that its position at time  t 

      is 
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  Find the value of 
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and interpret 

      the meaning of your answer in the context of the problem.
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